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Abstract

One of the main objectives of statistics is the comparison of random quantities in some

stochastic sense. The need for providing a more detailed comparison of two random quan-

tities has been the origin of the theory of stochastic orders that has been used during the

last fifty years, at an accelerated rate, in many diverse areas of probability and statistics.

Such areas include reliability theory, queuing theory, survival analysis, biology, economics,

finance, insurance, actuarial science, operations research, and management science, and

other fields in engineering, natural, and social sciences. These comparisons are mainly

based on the comparison of some measures associated with these random quantities. As

a result, several stochastic orders have been comprehensively discussed in the literature

most of which are based on some reliability concepts for residual life and inactivity time

at a fixed time. Furthermore, statisticians and reliability analysts have shown a growing

interest in modeling survival data using classifications of life distributions by means of

these stochastic orders. In reliability and life testing, a number of nonparametric classes

of life distributions are considered to model the lifetimes of individuals as well as physi-

cal, biological, mechanical systems or components. Most of the reliability classes of life

distributions are defined in terms of the reliability measures based on residual life and

inactivity time and provide probabilistic information on them. These classes by no means

are important ones in terms of their applications.

In the past few years, a lot of interest has been evoked on the study of stochastic

properties of residual life and inactivity time at a fixed time. However, in real life appli-

cations, sometimes the time is not fixed and could be viewed as some nonnegative random

variable (dependent or independent with generic lifetime). For example, the idle time of

a server in a classical GI/G/1 queuing system is expressed as a residual life at random

xxvii



xxviii ABSTRACT

time (RLRT), the incubation period of a disease, i.e., the time between infection and be-

ginning of a disease identifies with the notion of inactivity time at random time (ITRT).

The concepts of RLRT and ITRT have evolved into a deep field of enormous breadth with

ample structures of its own, establishing strong ties with numerous striking applications

in reliability theory, survival analysis, queuing theory, forensic sciences and many other

applied areas.

There exist plenty of scenarios where a statistical comparison of RLRT/ITRT and

the study of their associated classes of life distributions are also required. But, only few

works seem to have been done in this direction. In this thesis, we shall mainly be con-

cerned about the stochastic properties of RLRT and ITRT. To this aim, first we assume

that the generic lifetime and the random time are statistically independent and carry out

stochastic comparisons of RLRT and ITRT in two sample problem having same as well

as different random ages or observed to fail at same/different random times. We also

investigate various properties of RLRT and ITRT based on different (ageing) classes of

life distributions. We enhance the study and provide some new preservation properties of

generalized ageing classes and generalized stochastic orderings for RLRT and ITRT. To

enhance the study further, we consider the case when the generic lifetime and random

time are not necessarily independent and obtain stochastic comparison results for RLRT

and ITRT including their ageing notions. Finally, we consider a mixture model based

on residual lifetime. We perform stochastic comparisons of two mixture models having

different base line distributions as well as two different mixing distributions. Preservation

properties of some ageing classes have also been discussed for this model.

Some applications of the results derived in this thesis are also illustrated in the context

of statistics and reliability theory. The results strengthen some results available in the lit-

erature and are expected to be useful in reliability theory, forensic science, econometrics,

queueing theory and actuarial science. This thesis is also intended to stimulate further

research on stochastic orders and (ageing) classes of life distributions for residual life and

inactivity time at random time with their applications.

Key Words and Phrases: Classes of life distributions, residual life (inactivity time) at

random time, residual lifetime mixture model, stochastic orders.



Chapter 1

Introduction and a Brief Review of

Literature

1.1 Introduction

During the last few decades, global competition in the market place has become more

complicated. From customer’s point of view, a product that has higher reliability is more

acceptable than the product which has less reliability. Recall that, reliability is the ability

of a system or component to perform its required functions under stated conditions for a

specified period of time. An AC remote control quit functioning, a mobile battery goes

dead, a CD disk drive goes bad, a mobile speaker quit, a laptop malfunctioning and a

house roof leaks badly. In order to achieve good performance of a product, one has to

understand the reliability of the product. Reliability plays a key role in monitoring the

quality of various products/systems, which is primarily due to the complexity, sophisti-

cation, and automation inherent in modern technology.

Today’s consumers are more conscious about product reliability while purchase. Evi-

dently, the question of selecting the best product in terms of multifarious characteristics,

viz., reliability, length of lifetime, etc., arises. Before purchase, customers are concerned

about the reliability of the product after the warranty period. So it is interesting to

compare the remaining lifetimes after the warranty period of different brands electronics

1



2 Chapter 1. Introduction and a Brief Review of Literature

items, such as mobile, laptop, hairdryer, trimmer, etc, in order to decide which brand is

to be preferred. The necessity of comparing random lifetimes is not restricted to mar-

ket products but also has a vital significance in several other fields. This can be better

understood by putting across an example of COVID-19 which has proliferated around

the globe and become the greatest threat to global public health of the century. The

comparison of remaining lifetimes of a particular patient at different times of his/her life

span after infection helps in determining whether the patient will take to recover or die.

This enables the hospital management to decide the order in which patients need to be

treated. In information theory, we require to compare two different systems in the sense

of less uncertainty of residual lifetime to select the better system. In biological sciences,

remaining lifetimes of control group of living organisms need to be compared with group

receiving drug in order to conclude about the effectiveness of a particular drug. If one

wishes to model the length of hospital stay of a surgical patient or, to setting rates and

benefits for life insurance, then we need to take into account their residual lifetimes. It is

also of interest to compare the lifetimes of different breeds of animals in order to decide

which breed is to be preferred. In econometrics, different income distributions are to

be compared in terms of the corresponding income inequalities and the various random

prospects need comparison so that the better one can be chosen. Along with the residual

life, the comparison of past lives (inactivity times) of components which were observed to

fail at a certain time has received considerable attention in diverse areas. For a product,

the manufacturer expects a high reliability (no failure) during warranty period to have

less claim. In the case of COVID-19 infection, it is also important to take into account

the time that has elapsed since a patient had been infected and to compare the inac-

tivity times of virus in the body of patients. The comparison data helps in determining

the extent to which the disease has proliferated in the body of patients and the order in

which the patients need to be treated (who all need to be treated at earliest). In forensic

science, the exact time of failure (e.g., death in case of human beings) is often not known.

Here also, one is interested in the time elapsed from the failure. The comparison could

also be used in insurance where the length of the period of the first payment to the death

of the policy holder is of utmost importance. Residual life or inactivity time of mechan-
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ical devices/equipment or of biological organisms are, respectively, the focus of survival

analysis and reliability. In manufacturing engineering, items of different brands need to

be compared with respect to their residual life/inactivity time for remanufacturing.

Customarily, the comparison of residual lives and inactivity times often concern the

scenarios in which the systems have fixed age or failed at fixed time. However, in re-

liability engineering, survival analysis, and many other applied areas, researchers often

encounter the scenario in which a system or a component has survived (or failed) one

unknown time point, which could be viewed as the realization of some nonnegative ran-

dom variable. Therefore, it is highly worthwhile to study residual life and inactivity time

at some random time. In real life, technical items can be incepted into operation having

already some random age. Assume that we do not know when an operating item has been

incepted into operation. Consider the case of buying a second-hand car from a company

that sells used cars having some initial random age before being put on sale. Now, if a

car is directly purchased from a potential seller in the locality, then the remaining life-

time of that car would be defined by residual life at random time. But, when the car is

purchased (picked up at random) from a lot/mixture of used cars available with the car

selling company, then the remaining lifetime of the car would be defined by residual life

at random age (also called residual lifetime mixture model). In both the cases, it may

be of interest to study the concept of residual life not at fixed time but at random time

through introducing randomness to the reference time point. The idle time of a server in

a classical GI/G/1 queuing system is also expressed as residual life at random time. In

the literature, one can find another notion of random time, i.e., inactivity time at random

time which is defined for an item failed at an unknown time. In medical science, study of

incubation period of a disease, i.e., the time between infection and beginning of a disease,

is of great importance. Suppose a person has undergone a medical test to check whether

he has been infected by dengue or not, and the test reveals positive. Now the time when

he had been infected by the disease is random and the beginning of the disease is also

random. So it is interesting to study the incubation period of the disease, represented as

inactivity time at random time.
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During the last 50 to 60 years, a comparison of random quantities in terms of so-called

stochastic orders and the classification of life distributions have received much attention

due to their important role in different fields like actuarial science, survival analysis,

risks, econometrics, finance and epidemics and so on. Apart from all these, stochastic

orders and their associated classes have also an intense application in reliability theory.

In stochastic order, we compare two random variables or compare some measures asso-

ciated with these random quantities. Stochastic orders are very well-established tools to

compare random quantities and it helps to design and optimize in order to increase the

reliability of complex stochastic systems. On the other hand, in reliability and life testing,

survival analysis for modeling situations, inventory theory, biometry, and maintenance,

a number of nonparametric classes of life distributions have been defined to describe the

reliability characteristics of random lifetimes. Some of these classes represent the notion

of ageing which describes how a system or component improves or deteriorates with age.

Under the various circumstance, one can characterize the life distribution classes using

stochastic comparisons as well. In the literature, many stochastic orders and classes of life

distributions are categorized or defined. These are based on some reliability measures for

continuous life distributions. We confine ourselves to those of direct association with the

residual life and inactivity time. In the same vein of residual life and inactivity time at

fixed time, the concept of residual life at random time (RLRT), inactivity time at random

time (ITRT) and residual lifetime mixture model (RLMM) have also made rapid stride

in recent years. The present thesis deals with the study of stochastic properties of RLRT

(including RLMM) and ITRT. Here we extend, generalize and unify the stochastic orders

and the (ageing) classes of life distributions for RLRT, ITRT and RLMM in connection

with residual life and inactivity time.

For convenience, throughout the thesis the words increasing (decreasing) and non-

decreasing (non-increasing) are used interchangeably. All expectations and integrals are

implicitly assumed to exist. By ‘X
d
= Y ’ we mean that the random variables X and Y

are same in distribution. All the random variables considered here are nonnegative and

a/0 is assumed to be ∞ where a > 0.
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1.2 Review of Literature

We divide this section into nine subsections. In the first subsection, we discuss about

residual life. A short presentation on inactivity time is made in subsection two. The third

subsection deals with the study of some measures defined on residual life and inactivity

time. In the fourth subsection, we give some definitions of stochastic orders and their

interrelations. In the fifth subsection, we reproduce some definitions of life distribution

classes and their interrelations. A brief review on generalized stochastic orders and ageing

classes is given in subsection six. In the seventh subsection, we discuss on residual life

at random time. A brief review on inactivity time at random time is made in subsection

eight. Subsection nine deals with the study of residual lifetime mixture model.

1.2.1 Residual Life

For most products, customers see reliability as one of the important quality characteristic.

When a producer discharges a product in the market, a data-sheet is given along with

the product, which expresses the life of the component(s). The producer has to bear the

repairing charges or replacement cost if the product fails within the warranty period. So

customers are keen to know the remaining life of the product after the warranty period.

Thus, it is of importance to know the residual life or additional life after warranty period

of the product. For any random variable X, let Xt = (X − t|X > t) denote a random

variable whose distribution is the same as the conditional distribution of X− t given that

X > t. If the random variable X denotes the lifetime of a unit, then Xt is known as the

residual life of that unit after surviving time t. For an element, the residual life represents

the remaining period of that element until it will next require restoration, renewal, reha-

bilitation, reconstruction or replacement. Residual life of a system means the system, all

sub-parts and all components thereof will continue to perform their function satisfactorily

without refurbishment, replacement or significant maintenance. A nice interpretation of

residual life is given by Watson and Wells (1961) in reference to the possibility of improv-

ing the useful life of items by eliminating those with short lives. Suppose that every item
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of a product with lifetime X is put in operation and run until either the item fails or a

time t elapses, whichever comes first. Then a fraction of the product, in the long run, that

does not fail is defined by Xt. To illustrate the importance of the random variable Xt we

give two examples. First, consider a cancer patient undergoing chemotherapy. Then the

variable of interest would be how long he/she would survive given that his/her treatment

has begun a fixed time, say t, ago which is denoted by Xt. In the second example we

assume that, at time t a computer is attacked by a malware. Now it is great to know how

much time the computer will be operated after the attack by malware. Residual life is

one of the important notions for studying the reliability characteristics of a system and it

plays a vital role while choosing an electronic item. Sometimes a multi-component system

fails but all the components of the system do not fail, so if we know the remaining life of

the components which are not fail can be re-used.

Actuaries apply residual life to setting rates and benefits for life insurance. If t is

the deductible for a particular policy and X representing the loss then Xt represents the

amount of claim (cf. Gupta and Kirmani, 1998). In economics, for investing landholding

residual life is used. It has been found useful in the social sciences for the life length

of wars and strikes mentioned by Morrison (1978). It occurs in biomedical sciences to

analyze survivorship studies (cf. Gross and Clock, 1975). It is used to model the length

of hospital stay of surgical patients. The residual life is an important notion of many

other areas such as renewal theory, burn-in, branching process, and dynamic program-

ming. For an extensive discussion based on residual life, one may refer to Nagaraja (1975),

Hall and Wellner (1981), Gupta and Gupta (1983), Gupta (1987), Guess and Proschan

(1988), Galambos and Hagwood (1992), Embrechts et al. (1997), Navarro et al. (1998),

Gupta and Kirmani (2000), Lin (2003), Li and Lu (2003), Navarro et al. (2008), Banjevic,

D. (2009), Huang and Su (2012), Gurler (2012), Eryilmaz (2013), Gupta (2013), Tavan-

gar (2014), Gupta et al. (2015), Bairamov and Tavangar (2015), Samadi et al. (2017),

Chahkandi et al. (2017), Navarro (2018) and Su and Hung (2018), among others.
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1.2.2 Inactivity Time

It is reasonable to infer that in many realistic situations the random variable is related

to the past not to the future. For instance, suppose that, at time t, a person underwent

a medical test to check whether he/she has been infected by COVID-19 or not, and the

test reveals positive. Let X denote the time that he/she has been infected by the virus.

Hence, it is known that t is greater than or equal to X. Now the question arises, how

much time has elapsed since he/she had been infected by COVID-19. Again, suppose

that a chemist runs a reaction for which the end point is unknown. Considering the fact

that it is practically impossible to monitor the reaction continuously. Assume that when

the chemist checks the reaction at time t, he found that the reaction has already attained

its end point. The chemist might be interested to know the exact time at which the

reaction was completed. In this case also the same question as above arises. Therefore,

the random variable of interest is X(t) = (t−X|X 6 t) which is known as inactivity time.

The random variable X(t) has received considerable attention in the literature and is also

known as reversed residual life or time since failure. It can be interpreted in a situation

of replacement policy. To be more specific, in a periodic replacement policy a system is

observed after a certain period of time, say, T . So, at times T, 2T, 3T, . . . , the system is

observed, and it is possible that at time nT the system is found to be down but at time

(n− 1)T it was functioning, where n is a positive integer. Now, if the random variable X

is the failure time of the system, the variable of interest is how much before time nT the

system failed, and it is represented as [nT −X|X 6 nT ]. By writing nT = t, we have the

conditional random variable X(t). Thus, X(t) is the time interval between the observed

failure time t and the exact failure time X given that failure has occurred at or before

time t. Inactivity time has mainly been used in reliability theory, but it is also useful

to describe the behavior of lifetime random variables in survival analysis (cf. Andersen

et al., 1993). Some applications in risk theory and econometrics have been studied by

Eeckhoudt and Gollier (1995), Kijima and Ohnishi (1999) and Mi (1999), to name a few.

The inactivity time could be used in forensic science, where it is of importance to estimate

X(t) in order to determine the exact time of death of a human being. It also plays an
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important role in insurance. Suppose by time t an individual policyholder must pay all the

premium for an insurance policy. Unfortunately, suppose at time X the policyholder dies

and assume all the premiums are cleared till X. So, X(t) represents the period remaining

unpaid by the policyholder due to his/her death (cf. Maiti and Nanda, 2009).

Ruiz and Navarro (1996) were the first to define the inactivity time. In last two

decades various types of stochastic orders and associated classes of life distributions have

been developed and studied based on the inactivity time function. Li and Lu (2003)

studied the inactivity time for series and parallel systems. For a detailed account of

various properties, applications and higher order moments of inactivity time, one may

refer to Nagaraja (1975), Nanda et al. (2003), Sunoj and Maya (2008), Kundu and Nanda

(2010), Gupta (2013), Gupta et al. (2015), Tavangar and Asadi (2015), Bayramoglu and

Ozkut (2016), Navarro et al. (2017), Kundu and Sarkar (2017), Kundu and Ghosh (2017),

Abouelmagd et al. (2018), Navarro and Cali (2019) and Mahdy (2019), also.

1.2.3 Some Reliability Concepts for Continuous Lifetime Dis-

tributions

Let X be a nonnegative random variable representing the random lifetime of a unit or a

system having absolutely continuous distribution function

F (t) = P (X 6 t), t > 0.

This unit could be the lifetime of a human being, an animal or a plant, or a non-living

object. For non-living objects, the total amount of time for which the unit carries out

its function satisfactorily is defined as the lifetime of those objects. Then the survival

function of X is defined by

F (t) = P (X > t)

= 1− F (t), t > 0.

In reliability and survival analysis, where a random variable represents the lifetime of

a unit, the survival function is the probability to survive of this unit beyond t units of
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time. If f(·) is the probability density function of X, then the survival function is also

represented as

F (t) =

∫ ∞
t

f(u)du.

There are several measures, defined in reliability theory, based on residual life and inactiv-

ity time. These measures are found to be great tools to evaluate the stochastic behaviour

of X. Some of the concepts for studying the reliability characteristics of a system are the

failure rate or hazard rate, the mean residual life, the variance residual life, the reversed

hazard rate, the expected inactivity time and the variance inactivity time. These are the

most important notions in the area of engineering, biomedical science, actuarial science,

forensic science, reliability theory, survival studies, business, social sciences and many

other fields. Note that, hazard rate, mean residual life and variance residual life functions

are important to study a system which has survived to an age t (residual life). On the

contrary, the other three functions deal with the study of a system which is known to fail

at or before some time t (inactivity time).

1. Hazard Rate or Failure Rate Function

In reliability theory, survival analysis, medical research, industrial life testing and other

studies, the lifetime distributions are often specified by choosing a relevant failure rate/hazard

rate function. The hazard rate function is also known as force of mortality in demogra-

phy, the inverse of the Mill’s ratio in economics, intensity function in the extreme value

theory and in epidemiology, it is known as age-specific failure rate. It is time dependent

and provides an instantaneous rate of failure. If a system has survived up to time t, the

conditional probability of failure in the time interval (t, t + ∆t), where ∆t (> 0) is very

small, is given by

P (t < X 6 t+ ∆t|X > t) =
F (t)− F (t+ ∆t)

F (t)
.

Then the hazard rate function r(t) is defined as

r(t) = lim
∆t→0

P (t < X 6 t+ ∆t|X > t)

∆t
.
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The hazard rate function r(t) can be thought of as the intensity of failure of a device in

the next small interval of time ∆t, given that the device has survived up to time t. Thus,

∆t · r(t) is the approximate probability of failure before time t + ∆t, given that it has

survived up to time (age) t. When X is an absolutely continuous random variable, then

r(t) =
f(t)

F (t)
= − d

dt
ln(F (t)). (1.2.1)

Integrating (1.2.1) with respect to t, we get

F (t) = exp

(
−
∫ t

0

r(u)du

)
.

There are many general shapes for the hazard rate. Some generic types of hazard rates

are monotone hazard rates, either increasing or decreasing, non-monotone hazard rates,

either bathtub-shaped or hump-shaped. Increasing hazard rates arise when the unit is

wearing out with age. Models with decreasing hazard rates arise when the unit is im-

proving with age. If the hazard rate is decreasing early and eventually begins increasing,

then the hazard rate is bathtub-shaped. An example of a bathtub-shaped hazard rate is

the case with the age-specific death rate in human life tables. In hump-shaped hazard

rate, the hazard rate is increasing early and eventually begins declining. After successful

surgery of a human being, where there is an initial risk of death due to infection or other

complications just after the surgery and then risk of death is decreasing as the patient

recovers, is an example of hump-shaped hazard rate. The concept of hazard rate has a

long and exciting usefulness in the literature. It is not possible to nail down the review

of this subject in a few pages.

2. Reversed Hazard Rate Function

The reversed hazard rate function was first introduced as a dual function of the hazard

rate function by Barlow et al. (1963). The name reversed hazard rate was first mentioned

by Lagakos et al. (1988). Sometimes it is called reversed failure rate, retro-hazard rate,

or backward hazard rate function. The reversed hazard rate has mainly been applied in

reliability engineering, even though initially introduced in actuarial research. It is useful

for the analysis of left-censored and right-truncated data. Suppose that a system has
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failed at or before time t. Then the conditional probability that it survived at least up to

time t−∆t, where ∆t (> 0) is very small, is given by

P (t−∆t < X 6 t|X 6 t) =
F (t)− F (t−∆t)

F (t)
.

The reversed hazard rate function r̃(t) is defined as

r̃(t) = lim
∆t→0

P (t−∆t < X 6 t|X 6 t)

∆t
.

Here ∆t · r̃(t) is the approximate probability of failure of a unit in the interval (t−∆t, t],

given that it has failed at or before time t. When X is an absolutely continuous random

variable, then

r̃(t) =
f(t)

F (t)
=

d

dt
ln(F (t)). (1.2.2)

Likewise the hazard rate function, the reversed hazard rate function also uniquely deter-

mines the distribution function F (t) through the relation

F (t) = exp

(
−
∫ ∞
t

r̃(u)du

)
.

In the literature, a number of different applications of reversed hazard rate function

have been investigated in the study of lifetime random variables. In forensic sciences, the

reversed hazard rate function is quite useful to find out the exact time of failure of a unit

or a human being. Ware and DeMets (1976) and Andersen et al. (1993) used the reversed

hazard rate function to estimate the survival function of left-censored data. Keilson and

Sumita (1982) studied it in the context of stochastic ordering. For a retrospective analysis

of epidemiological data on individuals in a group, Lagakos et al. (1988) used the reversed

hazard rate function. Same kind of data were studied by Kalbfleisch and Lawless (1989)

using reversed hazard rate function. Some applications of reversed hazard rate in the

study of continuous-time Markov chains is given in Kijima (1998). Block et al. (1998)

have shown that unlike the monotonicity of the hazard rate function, the monotonicity

of the reversed hazard rate function is not related to the ageing property of the unit.

Different characterizations of the reversed hazard rate have been studied by Block et

al. (1998), Sengupta et al. (1999) and Chandra and Roy (2001). Finkelstein (2002a)
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expressed the relation between hazard rate and reversed rate functions as

r̃(t) =
r(t)

exp
(∫ t

0
r(u)du

)
− 1

.

Lawless (2003) developed nonparametric estimator of the survival function for the right

truncated data using reversed hazard rate function. Chandra and Roy (2005) defined and

studied classes of distributions based on reversed hazard rate and made their implicative

relationships. For more details information of reversed hazard rate function, one can refer

to Nanda et al. (1998), Kijima and Ohinishi (1999), Gupta and Nanda (2001), Nanda and

Shaked (2001), Gupta and Wu (2001), Nanda et al. (2003), Chen et al. (2004), Gupta et

al. (2004), Nair and Asha (2004), Ahmad and Kayid (2005), Chandra and Roy (2005),

Sunoj and Maya (2006), Gupta and Gupta (2007), Sankaran and Gleeja (2007, 2008),

Kayid et al. (2011), Misra and Misra (2013), Veres-Ferrer and Pavia (2014), Burkschat

and Torrado (2014), Oliveira and Torrado (2015), Gupta (2015), Abouelmaged et al.

(2018) and Kayid et al. (2019), to mention a few.

3. Mean Residual Life Function

The hazard rate is closely related to another significant concept of reliability known as

mean residual life (mrl), which is defined as

m(t) ≡ E(Xt) = E(X − t|X > t)

=
1

F (t)

∫ ∞
t

F (u)du.

It is also known as biometric function (cf. Chiang, 1960), life expectancy or expectance

of life function (cf. Barlow and Proschan, 1965) and expected remaining life function or

the mean excess function (cf. Abdous and Berred, 2005). The mrl function is finite for

all finite t, and is usually of interest when X is a nonnegative random variable. However,

it is possible that m(∞) = limt→∞m(t) = ∞. Though m(t) is positive but not every

nonnegative function is a mrl function corresponding to some random variable. For some

set of conditions for a function to be a mrl function and properties one may refer to

Bhattacharjee (1982) and Shaked and Shanthikumar (1991, 2007).
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If we have some idea about the expected remaining life for which the component under

consideration will continue to work, then it becomes easy to replace that component.

Mean residual life is more useful than the failure rate for constructing the maintenance

policies. Sometimes, the mrl function may be more relevant than the hazard rate function,

for example, in industrial reliability studies of repair and replacement strategies. The mrl

function summarizes the entire residual life distribution, whereas the hazard rate function

involves only the risk of immediate failure. The hazard rate and mrl functions of X are

linked through the relation (cf. Muth, 1977)

r(t) =
1 + d

dt
m(t)

m(t)
.

Calabria and Pulcini (1987) established that

lim
t→∞

m(t) = lim
t→∞

1

r(t)
,

provided the latter limit exits, finite and strictly positive. Zahedi (1991) claims that

the mrl function has more intuitive appeal than the concept of hazard rate function for

modeling and analysis of failure data. Moreover, the existence of the probability density

function does not required for the existence of the mrl function. For a comparison and

discussion of the advantages of the use of mrl function over the hazard rate function in

some applications one may refer to Muth (1977), Gupta (1981), Bhattacharjee (1982),

Calabria and Pulcini (1987), Ghai and Mi (1999), Lillo (2000) and Hu et al. (2002),

among others.

Mean residual life function is an eminent characteristic in reliability, survival analysis,

actuarial studies and various other areas. In studies of human populations, demographers

are interested in life expectancy or expectation of life which is simply mrl concept in dis-

guise. In binary systems, where the system has two possible states as either working or

failed, the mrl has been extensively studied in the literature. In economics, for investing

landholding it is also used. In maintenance and product quality control, for analyzing

burn-in, mrl function is used to model the ageing process of a device. In product tech-

nology, the mrl has been applied to a cutting tool monitoring problem by Chinnam and

Baruah (2004). The mrl function also arises in many other areas such as biomedical sci-

ence, actuarial science, economics, renewal theory, optimal disposal of an asset, dynamic
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programming, and branching process. In the literature, there have been many sources

where one can find more applications of the mrl function in modeling and analysis of fail-

ure data in a number of different areas. For example, see, Chiang (1960), Bjerkedal (1960),

Watson and Walls (1961), Bryson and Siddiqui (1969), Weiss and Dishon (1971), Jardine

and Kirkham (1973), Hollander and Proschan (1975, 1980), Elandt-Jhonson and Jhonson

(1980), Schoenfeld (1980), Kuo (1984), Park (1985), Bhattacharjee (1986), Berger et al.

(1988), Guess and Proschan (1988), Guess and Park (1991), Siddiqui and Caglar (1994),

Kulkarni and Rattihalli (2002), Gupta and Bradley (2003), Gupta and Kirmani (2004a),

Lai and Xie (2006) and Banjevic (2009), Sun and Zhang (2009), Sun and Zhao (2010),

Sun et al. (2012), Huynh et al. (2012), Le Son et al. (2013), Yang and Zhou (2014),

Gupta (2016), Lin et al. (2018), Pourjafar and Zardasht (2020) and Ma et al. (2020),

just to name a few.

In many statistical studies, the mrl function is of prime importance and has exten-

sively been studied in the literature. Some tests for alternatives representing decreasing

mrl function has been developed by Hollander and Proschan (1975). Hall and Wellner

(1981) have characterized the mrl function and express survival function in terms of it and

studied some residual moments and inequalities for mrl. Gupta (1981) has established

a method of obtaining the moments in terms of the mrl function. The class of the mrl

function has been characterized by Bhattacharjee (1982). Hollander and Proschan (1975)

have derived tests that the underlying failure distribution is exponential, versus it has

a monotone mrl function. But their tests were based on a complete sample. However,

data are always not complete, it could be incomplete. Chen et al. (1983) generalized the

Hollander and Proschan (1975) tests for monotone mrl function using randomly censored

data. They have also investigated the efficiency loss due to the presence of censoring.

Calabria and Pulcini (1987) presented a useful relationship between the asymptotic val-

ues of the mrl function and the hazard rate of a generic continuous distribution function.

It is also shown that at infinity the derivative of the mrl function of a positive random

variable always tends to zero. The mrl function has attracted many researchers including

Meilijson (1972), Hamdan (1972), Swartz (1973), Balkema and De Hann (1974), Gupta

(1975), Morrison (1978), Yang (1978), Alzaid (1988), Shaked and Shanthikumar (1991),
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Tsang and Jardine (1993), Gupta and Akman (1995), Li (1997), Aly (1997), Müller and

Scarsini (2006), Raqab and Asadi (2008), Ghebremichael (2009), Shen et al. (2010),

Nanda et al. (2010), Eryilmaz (2010), Bayramoglu (2013), Gupta (2015), Chen et al.

(2016), Viswakala and Sathar (2019) and Nanda and Kayal (2019), among others.

4. Mean Inactivity Time Function

Due to the important role in reliability theory, survival analysis, forensic science, actuarial

science, maintenance policies, and many other areas of applied probability, the mean

inactivity time (mit) function has received much attention in the last two decades. The

mit function represents the average past life of a component which was observed to fail

at time t. It is also known as expected inactivity time or reversed mean residual life or

expected stopped time or mean past lifetime function. The mit function of X is defined

by

m(t) =

 E(t−X|X 6 t), t > 0,

0, otherwise.

For an absolutely continuous nonnegative random variable we have

m(t) =

∫ t
0
F (u)du

F (t)
, t > 0.

Finkelstein (2002a) called the mit as mean waiting time and they used it in defining

reversed hazard rate function. The reversed hazard rate and mean inactivity time are

closely related to each other because both are associated with right truncated random

variables and determine a distribution uniquely. They are linked through the relation (cf.

Finkelstein, 2002a)

r̃(t) =
1− d

dt
m(t)

m(t)
.

In real life situation, mit is a quantity of interest to assess the lifetime of a system.

In actuarial sciences, with the help of mit one can determine the expected time elapsed

since failure in order to predict the exact time of failure. In insurance, the mit could be

used, where the expected length of the period of the first payment to the death of the

policy holder is of importance. In forensic sciences, it could also be applied to determine
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the expected time elapsed since death of a human being in order to predict the exact time

of death. While describing different maintenance strategies, the mit might be of interest.

In cases of diseases that can recur, efficiency of a treatment is determined by analyzing

the remission period, i.e., disease free survival time. Often the true remission period is

unknown due to an inability to continuously monitor patients because of the high cost

and effort involved. In such circumstances, the true remission period can be estimated

using the mit function.

The mit function has received much attention in recent years. Navarro et al. (1997)

have defined and studied a new stochastic order based on mit, which they called reversed

mean residual life order. Chandra and Roy (2001) established some properties of mit with

respect to reversed hazard rate. Finkelstein (2002a) focused on the importance of mit in

defining the reversed hazard rate and also studied its properties. Nanda et al. (2003)

have defined and studied some new classes of distributions based on mit, and obtained

some stochastic ordering results. Kayid and Ahmad (2004) perform some stochastic

comparisons based on mit order (definition follows) under the convolution and mixture.

Ahmad et al. (2005) provided some other preservation and characterization results for the

mit ordering and increasing mit function under convolution, mixture, and shock models.

They also studied a closure property under shock models and series systems. Asadi (2006)

introduced and studied various properties of mit function for components of a parallel

system. For more research related to mit one may refer to Ahmad and Kayid (2005),

Goliforushani and Asadi (2008), Kundu and Nanda (2010), Eryilmaz (2010), Tavangar

and Asadi (2010), Gandotra et al. (2011), Izadkhah and Kayid (2013), Gupta (2015),

Kayid and Izadkhah (2014, 2018) and Kayid et al. (2018), to mention a few.

5. Variance Residual Life Function

The concept of residual life is of special interest in reliability theory and survival analysis

as it measures the remaining life of a mechanical equipments or of a biological organism

after it has attained a specific age. Various characteristics of residual life such as its

mean, variance, and higher order moments have been studied in the literature. The vari-
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ance residual lifetime (vrl) function is useful in many areas including biometry, actuarial

sciences and reliability. It is denoted by σ2(t) and defined as

σ2(t) = Var(Xt)

= E[(X − t)2|X > t]−m2(t)

=
1

F (t)

∫ ∞
t

(u− t)2f(u)du−m2(t)

=
2

F (t)

∫ ∞
t

(u− t)F (u)du−m2(t)

=
2

F (t)

∫ ∞
t

∫ ∞
v

F (u)dudv −m2(t).

It appears in the expression of weights assigned for censored observations (cf. Schmee

and Hahn, 1979). It also appears in the estimation of mrl function (cf. Hall and Wellner,

1981).

The vrl function has been studied in reliability literature in connection with life length

problems and a lot of interest has been evoked on the study of vrl order and the associated

ageing classes (definition follows). Fagiuoli and Pellerey (1993) and Al-Zahrani and Stoy-

anov (2008) provided some implications and characterizations of vrl order. Karlin (1982)

studied its monotonic behavior when the density function is log-convex or log-concave.

Launer (1984) and Gupta et al. (1987) studied the classes of life distributions having

decreasing (increasing) vrl function. Gupta (1987, 2006) discussed its monotonicity and

study the relationship of decreasing/increasing vrl classes with some other known classes

of life distributions. Stoyanov and Al-sadi (2004) have studied the closer properties of

these classes under the reliability operations such as mixing, convolution and formation of

coherent systems. For a comprehensive account of several properties of vrl function, see

Dallas (1981), Chen et al. (1983), Abouammoh et al. (1990), Kanwar and Madhu (1991),

Gupta and Kirmani (1987, 2000, 2004b), Block et al. (2002), Stoyanov and Al-Sadi (2004),

El-Arishi (2005), Lai and Xie (2006), Abu-Youssef (2004, 2007, 2009), Banjevic (2009),

Nair and Sudheesh (2010), Khorashadizadeh et al. (2010, 2013a), Huang and Su (2012),

Gupta (2015) and Nair er al. (2017), among others.
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6. Variance Inactivity Time Function

Another quantity which has also generated interest in recent years is the variance in-

activity time (vit) function σ2(t). It is related to the random variable X(t) and defined

as

σ2(t) = Var(X(t))

= E[(t−X)2|X 6 t]−m2(t)

=
1

F (t)

∫ t

0

(t− u)2f(u)du−m2(t)

=
2

F (t)

∫ t

0

(t− u)F (u)du−m2(t)

=
2

F (t)

∫ t

0

∫ v

0

F (u)dudv −m2(t).

The concept of vit plays an important role in reliability and life testing. It provides

the variance time elapsed since the failure of a device under the assumption that the

device has already failed at time t, say. In the analysis of right truncated data, the vit

function plays the same role as that of the vrl function in the analysis of left truncated

data. Nanda et al. (2003) have shown that increasing mean inactivity time property is

stronger than the increasing variance inactivity time (IVIT) property (definition follows).

Mahdy (2012) studied the closure properties of the IVIT class under some reliability

operations such as mixing, convolution and formation of coherent systems. Al-Zahrani

and Al-Sobhi (2015) have studied some properties of vit function and also use it for

entropy measure. Al-Zahrani and Stoyanov (2008), Mahdy (2012, 2016), Al-Zahrani and

Al-Sobhi (2015) and Kayid and Izadkhah (2016) introduced the variance inactivity time

order (definition follows) for continuous random variables and gave some implications and

characterizations concerning this order. They also developed some preservation properties

of this order under mixture and convolution. Some new applications in the context of

economic theory, reliability, statistics and risk theory are also provided. Several properties

of vit function for discrete random variable have been studied by Khorashadizadeh et al.

(2013b), Mahdy (2013) and Gupta (2015).
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1.2.4 Stochastic Orders based on Above Reliability Concepts

How do people compare two products for choosing a better one than another. For example,

what do we mean when we say that an Apple mobile is better than an Oppo? Let X and

Y represent the lifetimes of Apple mobile and Oppo mobile, respectively. Then, Apple

mobile should be preferred to the Oppo mobile if X is larger than Y in some sense. Thus,

we need to check whether X is greater (or smaller) than Y in some sense. Since X and

Y are random variables, it is not possible to compare them in traditional way, i.e., the

way we compare real numbers. The simplest way of comparing the two products is by the

comparison of their means. However, such a comparison is based on only two numbers

measuring the centers of the distributions, and, therefore, is often not very informative.

In addition, the means sometimes do not exist (if any random variable is considered

and not just lifetime random variable). In many practical instances, one may have more

detailed information about the random variables than just their means for the purpose

of comparison of two random variables. When one is interested in comparing random

variables having same means (or that are centered about the same value), one may usually

think of comparing in terms of various measures of dispersion, e.g., standard deviation or

variance. Again, such a comparison is based on only two numbers having same type of

limitations as that of means. In order to overcome these limitations, various stochastic

orderings have been studied in the literature for comparison of two random variables.

These orderings have many applications in reliability theory, survival analysis, queuing

theory, insurance, biology, economics, operations research, actuarial science, management

science and many other areas. Following Lehmann (1955), the study on stochastic orders

has gained the interest of researchers and it has grown significantly since 1994. There

are several sources where the reader can find a deep historical review of stochastic orders,

e.g., Barlow and Proschan (1981), Müller and Stoyan (2002), Shaked and Shanthikumar

(2007), Belzunce et al. (2015) and the references therein.

In the sequel, we quickly review some well-known stochastic orders which are useful in

the present investigation. Of course, one can find some other stochastic orderings which

have extensive range of applications in reliability, survival analysis and many other areas.
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Let X and Y be two nonnegative random variables with distribution functions F (t) =

P (X 6 t), G(t) = P (Y 6 t) and density functions f(·), g(·), respectively. Write F (t) =

1− F (t) and G(t) = 1−G(t), as survival functions of X and Y , respectively.

Definition 1.2.1. X is said to be larger than Y in usual stochastic order (denoted by

X >st Y ) if and only if F (t) > G(t) for all t > 0.

This means, at each point t, the graph of F (t) lies above the graph of G(t). If we recall

the comparison of Apple mobile and Oppo mobile, then by ‘Apple is better than Oppo

in usual stochastic order’, we mean that for any specified time t, the Apple is more likely

to have a lifetime exceed t, than the oppo is. But, customers would like to collect more

information in terms of the comparison. They may be interested to know, given that both

the mobiles have survived up to a fixed warranty period (time t0), whether Apple is still

superior and hence less likely to fail in the near future than Oppo? Then the role of the

following stochastic orders come into picture.

Definition 1.2.2. X is said to be larger than Y in hazard rate order (denoted by X >hr Y )

if and only if rX(t) 6 rY (t) for all t > 0, where rX(t) and rY (t) are the hazard rate

functions of X and Y , respectively.

This is equivalent to,
F (t)

G(t)
is increasing in t > 0.

Note that X >hr Y if and only if Xt >st Yt, for all t > 0.

Definition 1.2.3. X is said to be larger than Y in mean residual life order (denoted as

X >mrl Y ) if and only if mX(t) > mY (t) for all t > 0, where mX(t) and mY (t) are the

mean residual life functions of X and Y , respectively.

The above can also be written as (cf. Fagiuoli and Pellerey, 1993),∫∞
t
F (u)du∫∞

t
G(u)du

is increasing in t > 0.

Suppose an Apple mobile and an Oppo mobile are known to have survived up to time

t, then by ‘Apple mobile is better than Oppo mobile in hazard rate order’ we mean that
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the probability that Apple mobile fails in the interval (t, t+∆t) is less than the probability

that the Oppo mobile fails in (t, t + ∆t), where ∆t (> 0) very small. In that case the

expected residual life (mean life expectancy at age t) for the Apple mobile is more likely

than that for the Oppo mobile. It is worthwhile to remark that the usual stochastic order

makes a statement about the distribution of two ‘new’ units with lifetimes X and Y ,

whereas the hazard rate and mean residual life orderings are making statement about X

and Y at an age t. Moreover, in mrl order we deal with the comparison of the means

of their residual lives. If one wishes to compare the dispersion/variability of the residual

lives then the following stochastic order will be considered.

Definition 1.2.4. X is said to be larger than Y in variance residual life order (denoted

by X >vrl Y ) if and only if σ2
X(t) > σ2

Y (t) for all t > 0, where σ2
X(t) and σ2

Y (t) are the

variance residual life functions of X and Y , respectively.

The above relation can also be expressed in the following form,∫∞
t

∫∞
x
F (u)dudx

F (t)
>

∫∞
t

∫∞
x
G(u)dudx

G(t)
.

Or equivalently (cf. Fagiuoli and Pellerey, 1993),∫∞
t

∫∞
x
F (u)dudx∫∞

t

∫∞
x
G(u)dudx

is increasing in t > 0, for any x > 0.

But, what if both the mobiles are known to have already failed at time t? How do we

compare them? In this case, the following order relations are of importance.

Definition 1.2.5. X is said to be larger than Y in

(i) reversed hazard rate order (denoted by X >rh Y ) if and only if r̃X(t) > r̃Y (t) for

all t > 0, where r̃X(t) and r̃Y (t) are the reversed hazard rate functions of X and Y ,

respectively. Or equivalently,

F (t)

G(t)
is increasing in t > 0;

(ii) mean inactivity time order (denoted by X >mit Y ) if and only if mX(t) 6 mY (t) for

all t > 0, where mX(t) and mY (t) are the mean inactivity time functions of X and
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Y , respectively. This is equivalent to∫ t
0
F (x)dx∫ t

0
G(x)dx

is increasing in t > 0.

If an Apple mobile and an Oppo mobile are known to have failed at time t, then by

‘Apple mobile is better than Oppo mobile in reversed hazard rate order’ we mean that

the probability that Apple mobile has survived up to time t − ∆t is greater than the

probability that the Oppo mobile has survived up to time t − ∆t (for a small ∆t > 0).

Thus, the expected length of the period since failure for Apple mobile is smaller than

that for Oppo mobile. Again, in mit order the location of two inactivity time random

variables are compared. But, when one wishes to compare two inactivity time random

variables that have non-ordered means, one is usually interested in the comparison of the

dispersion of these quantities. It is of interest to estimate the times that have elapsed

since the failure of the Apple and Oppo mobiles and to study the dispersion/variability

of these elapsed interval of times. As a result, the stochastic order which is defined on

the basis of the vit function has been considered by some authors in recent years.

Definition 1.2.6. X is said to be larger than Y in variance inactivity time order (denoted

by X >vit Y ) if and only if∫ t
0

∫ x
0
F (u)dudx

F (t)
6

∫ t
0

∫ x
0
G(u)dudx

G(t)
,

or equivalently, ∫ t
0

∫ x
0
F (u)dudx∫ t

0

∫ x
0
G(u)dudx

is increasing in t > 0, for any x > 0.

But, Sometimes customers require more clarifications for the comparison purpose. The

following is a stronger stochastic order than the orders discussed so far.

Definition 1.2.7. X is said to be larger than Y in likelihood ratio order (denoted by

X >lr Y ) if and only if f(t)/g(t) is increasing in t > 0.

The likelihood ratio order is a very important stochastic order as in many situations

it is easy to verify. It is the most strongest stochastic order which can be considered as a

sufficient condition for the hazard rate and the reversed hazard rate orders to hold.
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The interrelationships among the orderings discussed earlier are as follows:

X 6lr Y =⇒ X 6hr Y =⇒ X 6mrl Y =⇒ X 6vrl Y

⇓ ⇓

X 6rh Y =⇒ X 6st Y

⇓

X 6mit Y =⇒ X 6vit Y.

1.2.5 Classes of Life Distributions based on the Above Reliabil-

ity Concepts

The classes of life distributions provide a knowledge of the intrinsic structure of the

stochastic properties of random variables and have become an important tool in applied

probability. In reliability and life testing, several nonparametric classes of life distributions

are considered to model the lifetimes of a biological/mechanical systems or components.

Most of these classes which are defined based on the reliability concepts of residual life

characterize the ageing properties of the underlying phenomena. Here we recall the basic

concepts of ageing and the classes of positive life distributions in context with residual life

and inactivity time. It is a well-known fact that, every manufactured or naturally exist

item has certain life length and after performing its functions satisfactorily it starts de-

caying. Thus, in reliability connection, the age of a working unit is the time for which it is

already working satisfactorily without failure. By the term ageing, we mean a mathemat-

ical specification of degradation/upgradation of an item over time. To be more specific,

by ageing we mean a phenomenon whereby an older system has a shorter residual lifetime,

in some statistical sense, than a newer or younger one. The notion of ageing describes

how a component or system elevate or deteriorates with age. In the literature, this de-

scription covers the states, positive ageing and negative ageing. Positive ageing describes

the phenomenon that age affects the residual lifetime in some adverse manner, whereas,

negative ageing means beneficial effect of age on the random residual lifetime of the unit.

No ageing means that the age of a component has no effect on the distribution of residual

lifetime of the component. It is considered to be axiomatic that any effect of age on
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a unit, which contributes to the reduction of its residual lifetime (in some probabilistic

sense) is to be taken as an adverse effect and the phenomenon is called positive ageing (cf.

Deshpande et al., 1986). Generally, by ageing we mean positive ageing which is common

in reliability engineering as components tend to become worse with time due to increased

wear and tear. There are many classes of life distributions which have positive as well

as negative ageing criteria. Social scientists use some of these classes for studies on job

mobility, length of wars, duration of strike, etc. (cf. Morrison, 1978). Ageing classes

are used to describe a wear process and arise naturally in medicine, where testing for,

and estimation of, residual measure is of paramount importance. Bryson and Siddiqui

(1969), Launer (1984), Averous and Meste (1989), Barlow and Proschan (1981), Bondes-

son (1983), Deshpande et al. (1986) and Fagiuoli and Pellerey (1993), among others, gave

a complete classification of ageing classes. There is another set of classes of life distribu-

tions that refer the reliability measures based on inactivity time and do not reflect any

notion of ageing. Some interesting characterizations of life distributions can be obtained

based on the monotonicity of these measures. These classes have many applications, for

example, in life insurance, maintenance, economics, product quality control and social

studies. These classes are useful for analyzing the monotonic behaviour of left-censored

and right-truncated data. Some important classes of life distributions based on the mono-

tonicity of the reversed hazard rate, mean inactivity time and variance inactivity time

functions have been studied by Block et al. (1998), Chandra and Roy (2001), Nanda et al.

(2003), Kayid and Ahmad (2004), Li and Zuo (2004), Ahmad and Kayid (2005), Ahmad

et al. (2005), Li and Xu (2006), Misra et al. (2008), Kundu and Nanda (2010), Mahdy

(2012) and Misra and Naqvi (2017), among others. The following are some commonly

used classes that are closely related to our main theme.

LetX be a nonnegative random variable with survival function F , distribution function

F and density function f .

Definition 1.2.8. The distribution of X is said to be increasing (resp. decreasing) failure

rate (IFR (resp. DFR)) if and only if r(t) is increasing (resp. decreasing) in t > 0. Or

equivalently, Xt is stochastically decreasing (resp. increasing) in t > 0, which can be
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expressed as,

F (x+ t)

F (t)
decreasing (resp. increasing) in t > 0, for any x > 0.

This is again similar as the following (cf. Shaked and Shanthikumar, 2007)

Xt 6hr (>hr)X, for all t > 0.

Definition 1.2.9. The distribution of X is said to be increasing (resp. decreasing) mean

residual life (IMRL (resp. DMRL)) if and only if m(t) is increasing (resp. decreasing) in

t > 0. Or equivalently,∫∞
t
F (u)du

F (t)
is increasing (resp. decreasing) in t > 0.

Definition 1.2.10. The distribution of X is said to be increasing (resp. decreasing)

variance residual life (IVRL (resp. DVRL)) if and only if∫∞
t

∫∞
x
F (u)dudx∫∞

t
F (x)dx

is increasing (resp. decreasing) in t > 0, for any x > 0.

This can also be expressed as,∫∞
t

∫∞
x
F (u)dudx

F (t)
is increasing (resp. decreasing) in t > 0.

Definition 1.2.11. The distribution of X is said to be

(i) decreasing reversed hazard rate (DRHR) if and only if r̃(t) is decreasing in t > 0,

for any x > 0. This is equivalent to X(t) is stochastically increasing in t > 0, which

implies,
F (x− t)
F (t)

is increasing in t > 0, for any x > 0;

(ii) increasing mean inactivity time (IMIT) if and only if m(t) is increasing in t > 0.

Or equivalently, ∫ t
0
F (u)du

F (t)
is increasing in t > 0;

(iii) increasing variance inactivity time (IVIT) if and only if∫ t
0

∫ x
0
F (u)dudx∫ t

0
F (x)dx

is increasing in t > 0, for any x > 0.
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This can be written as,∫ t
0

∫ x
0
F (u)dudx

F (t)
is increasing in t > 0.

Block et al. (1998) have shown that there exists no nonnegative random variable

which has increasing reversed hazard rate function. Likewise, there exists no nonnegative

random variable for which the dual class of IMIT exists (cf. Chandra and Roy, 2001).

Similar to these classes, the decreasing variance inactivity time class also does not exist

for a nonnegative random variable. Below we define a stronger ageing class which was

first studied by Barlow and Proschan (1965).

Definition 1.2.12. The distribution of X is said to be increasing (resp. decreasing)

likelihood ratio (ILR (resp. DLR)), if and only if f(t) is log-concave (log-convex). This

is similar as, f(x+ t)/f(t) decreasing (resp. increasing) in t > 0, for any x > 0.

The interrelationships among the classes of life distributions discussed earlier are as

follows:

ILR(DLR) =⇒ IFR(DFR) =⇒ DMRL(IMRL) =⇒ DVRL(IVRL)

⇓

DRHR =⇒ IMIT =⇒ IVIT.

1.2.6 Generalized Stochastic Orders and Ageing Classes

Over the recent years, there is a rapid increase in the study of generalized stochastic or-

derings and generalized ageing classes in the literature. They are used in reliability, queue-

ing theory, econometrics, inventory, actuarial science, stochastic process and many other

applied areas. Generalized ordering were discussed by Fishburn (1980), Ekern (1980),

O’Brien (1984) and others. Several preservation results on generalized orderings under

Poisson shock models have been established by Fagiuoli and Pellerey (1993). Kass et al.

(1994) studied the generalized orderings in actuarial sciences. Nanda et al. (1996a,b) pro-

vided some stochastic properties on generalized orderings. Nanda (1997) used generalized

orderings in minimal repair policy. Denuit et al. (1998) used some generalized stochastic
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orderings in the context of insurance and queues. Different mixture properties of general-

ized ordering was studied in Hesselanger et al. (1998). Along with generalized stochastic

orderings, generalized ageing classes also play a critical role in reliability. Fagiuoli and

Pellerey (1993) provided a different type of classification of generalized ageing classes in

a unified way. Hu et al. (2001) obtained a number of characterizations for generalized

orderings and generalized ageing properties of random variables. Some generalized ageing

properties of the underlying distribution of renewal process has been discussed by Hu et

al. (2004). Cai and Zheng (2009) obtained some characterizations of generalized ageing

classes of inter-arrival times by the excess lifetime of a renewal process. For more infor-

mation related to generalized stochastic orders and generalized ageing classes one may

refer to Mukherjee and Chatterjee (1992), Navarro and Hernandez (2004), Belzunce et al.

(2008), Nanda and Kundu (2009) and Cai and Zheng (2012), to mention a few. For the

nonnegative absolutely continuous random variable X, let T 0(X, x) = Φ0(X, x) = f(x),

Φ1(X, x) = F (x), ∀x > 0 and for s ∈ N+ = Nr {0} where N = {0, 1, 2, 3, . . .},

Φs(X, x) =

∫ ∞
x

Φs−1(X, u)du, T s(X, x) =
Φs(X, x)

Φs(X, 0)
.

Then

rs(X, x) =
T s−1(X, x)∫∞

x
T s−1(X, u)du

= −
d
dx
T s(X, x)

Ts(X, x)
.

Clearly,

T 1(X, x) = F (x)

and

T 2(X, x) =

∫∞
x
F (u)du∫∞

0
F (u)du

.

Here rs(X, x) and T s(X, x) are respectively the hazard rate function and survival function

of the equilibrium distribution of the distribution with survival function T s−1(X, x), s =

2, 3, 4 . . .. Clearly, for s = 1, 2, r1(X, x) = r(x) and r−1
2 (X, x) = E(Xx) are the failure rate

function and the mean residual life function of X, respectively. Singh (1989) and Fagiuoli

and Pellerey (1993, 1994) have defined the generalized stochastic orders in a general way



28 Chapter 1. Introduction and a Brief Review of Literature

so that most of the partial orderings discussed earlier become the particular cases of their

general orderings.

Definition 1.2.13. Let s ∈ N. For two nonnegative random variables X and Y , X is

said to be larger than Y in

(i) s-ST order (denoted by X >s−ST Y ) if and only if T s(X,x)

T s(Y,x)
> T s(X,0)

T s(Y,0)
, for all x > 0

and s ∈ N;

(ii) s-FR order (denoted by X >s−FR Y ) if and only if rs(X, x) 6 rs(Y, x) for all x > 0

and s ∈ N.

Or equivalently, if T s(X, x)/T s(Y, x) is increasing in x > 0 for all s ∈ N.

Fagiuoli and Pellerey (1993) have defined some ageing classes in a general way de-

pending on the generalized orderings so that most of the ageing classes discussed earlier

become the particular cases of their general ageing classes. Following is the definition of

s-IFR (s-DFR) ageing class.

Definition 1.2.14. Suppose that s ∈ N. Then the distribution of X is said to be s-IFR

(s-DFR) if and only if rs(X, x) is increasing (decreasing) in x > 0.

Or equivalently, if Φs(X, x+ t)/Φs(X, x) is decreasing (increasing) in x for all x, t > 0.

It is easy to see that:

• X 60−FR Y ⇔ X 6lr Y ;

• X 61−FR Y ⇔ X 6hr Y ;

• X 62−FR Y ⇔ X 6mrl Y ;

• X 63−FR Y ⇔ X 6vrl Y ;

• X is 0-IFR (0-DFR) ⇔ X is ILR (DLR);

• X is 1-IFR (1-DFR) ⇔ X is IFR (DFR);

• X is 2-IFR (2-DFR) ⇔ X is DMRL (IMRL);

• X is 3-IFR (3-DFR) ⇔ X is DVRL (IVRL).
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1.2.7 Residual Life at Random Time (RLRT)

Let X be the lifetime of a system/component survived up to a time t, then the residual

life (remaining life) of X at a fixed time t is defined as Xt = (X − t|X > t). In literature,

a lot of interest has been evoked on the study of residual life at a fixed time. But, in real

life applications, sometimes the time is not fixed and it could be random. If t is replaced

by a random variable Y then XY = (X − Y |X > Y ) represents the residual life of X at

a random time Y (RLRT). In order to justify the practical importance and usefulness of

RLRT, consider the following examples:

(i) Assuming a women underwent a medical test to check whether she has been infected

by HIV or not, and the test reveals positive. Now it is unknown when she was

infected by HIV. Let Y represent the time of infection. Let us denote the total

lifetime of the woman by a random variable X. Hence, it is clear that X is greater

than Y . Then XY denotes the remaining life of the woman after being infected by

HIV to death.

(ii) Consider a two component series system, where the system is made up of components

C1 and C2 with random lifetimes X and Y , respectively. If C2 fails before C1, then

the system will fail to work but C1 may still be in working condition. In this

situation, XY represents the residual life of C1 at a time when C2 fails.

(iii) RLRT is one of the important notions in reliability and queuing theory. In theory of

reliability, it represents the actual working time of the standby unit if X is regarded

as the total random life of a warm standby unit with its age Y . In a classical GI/G/1

queue, let

Tn: time between nth and (n+ 1)th arrival, Tn ∼ T

Sn: service time of the nth customer, Sn ∼ S

Wn: waiting time in the queue of the nth customer, Wn ∼ W

I: length of the ideal period between busy periods.
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The sign ∼ is used to signify ‘with distribution function’. It is well-known that

Wn+1 = max{0,Wn + Sn − Tn} and I
d
= ((W + S)− T |W + S > T ) (cf. Marshall,

1968). Thus, the idle time of a server in a classical GI/G/1 queuing system can be

expressed as RLRT.

See, Stoyan (1983), for more details on, and applications of residual life at random time.

Let X and Y be two nonnegative random variables with a common support Θ, and Y

have distribution function G. Further, let the distribution and survival functions of XY

be represented as FY and F Y , respectively. If X and Y are mutually independent then

the distribution and survival functions of XY are respectively defined as,

FY (x) =

∫
Θ

[F (y + x)− F (y)]dG(y)∫
Θ
F (y)dG(y)

and

F Y (x) =

∫
Θ
F (x+ y)dG(y)∫
Θ
F (y)dG(y)

.

Further, assume that X and Y are not statistically independent. Let Xθ d
= (X|Y = θ)

and F θ be the survival function of Xθ, θ > 0. In this case, the survival function of XY is

given by

F Y (x) =

∫
Θ
F θ(x+ θ)dG(θ)∫
Θ
F θ(θ)dG(θ)

.

Stochastic comparisons and ageing properties of RLRT have been investigated in the

present two decades. Yue and Cao (2000) established a number of stochastic comparison

results for XY under the assumption that X, Y1 and Y2 are independent. They showed

that, if X is DFR (IFR) then XY1 6st (>st)XY2 and if X is IMRL (DMRL) then E(XY1) 6

(>)E(XY2) with the help of the condition Y1 6rh Y2. Under the assumption that Y has

DRHR, they further showed that if X is in any one of the classes IFR, DFR, DMRL or

IMRL thenXY also belongs to the same class ofX. They also obtained some useful bounds

for the distribution and the moment of XY . Li and Zuo (2004) established increasing

convex order (icx) between two RLRT and illustrated that, if Y1 6rh Y2 and X is IMRL

(DMRL) then XY1 6icx (>icx)XY2 . Li and Xu (2006) obtained a stochastic ordering in

two sample problem. It is shown that if Z (independent with X and Y ) is IMIT, then

XZ 6mrl YZ provided X 6hr Y and further XZ is DMRL when X is IFR. Misra et al.
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(2008) strengthen some of the results of Yue and Cao (2000) and Li and Zuo (2004).

They provided conditions on X and Y under which XY has log-concave (log-convex)

probability density function. They showed that, if Y1 6rh Y2 and X has DFR (IFR),

then XY1 6hr (>hr)XY2 . They also obtained if Y1 6rh Y2 and X is IMRL (DMRL) then

XY1 6mrl (>mrl)XY2 . Since mrl order implies icx order (cf. Shaked and Shanthikumar,

2007), so Misra et al. (2008) have a stronger version of the result of Li and Zuo (2004)

discussed earlier. Nanda and Kundu (2009) and Cai and Zheng (2012) consider generalized

stochastic orders and ageing classes for RLRT, where they generalized some of the results

of Yue and Cao (2000) and Misra et al. (2008). They studied the s-IFR (s-DFR) ageing

classes for XY under various assumptions on X and Y . Nanda and Kundu (2009) proved

that, if Y1 6rh Y2 and X has s-DFR (s-IFR), then XY1 6s−FR (>s−FR)XY2 . Cai and

Zheng (2012) obtained bounds of the residual life at exponential random time. Dewan

and Khaledi (2014) investigated some new stochastic orderings results among RLRTs in

one sample as well as two sample problems based on lr, hr, rh and mrl orders and also

provided simpler proofs of some of the results of Misra et al. (2008). Unfortunately,

the results concerning rh order is erroneous. The concept of RLRT has also been used by

Kayid and Izadkhah (2015a) to characterize exponential distribution. On the contrary, the

similar investigation in the presence of dependent structure between X and Y is relatively

new. Misra and Naqvi (2018a) have investigated some stochastic order results for RLRT

with respect to lr, hr and mrl orders and also studied the ageing notion of XY in terms

of hr and mrl functions, assuming dependency between the system life and random time.

Following the same spirit, Li and Fang (2018) also consider the comparisons of RLRTs.

They prove some of the stochastic comparison results of Misra and Naqvi (2018a) in a

different way. Recently, several stochastic orderings and ageing properties of RLRT for a

coherent system have been obtained by Amini-Seresht et al. (2020).

1.2.8 Inactivity Time at Random Time (ITRT)

In survival analysis and reliability theory, it is of interest to study the stochastic properties

of the inactivity time of either a system or a component or a human organism. Customary
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study of the inactivity time often concerns the scenario in which the system has failed

at a fixed time. However, in reliability engineering, survival analysis, forensic sciences

and many other applied areas, researchers often encounter the scenario in which a system

or a component has failed at one unknown time point, which could be viewed as some

nonnegative random variable. Therefore, it is highly worthwhile to look upon the concept

of the inactivity time at a random time (ITRT). In the following we provide certain

instances to illustrate the interpretation of ITRT:

(i) Suppose a person has died at an unknown time due to a car accident, and it is also

not known when he met with the accident. In such a case the times of accident

and death both are random, say X and Y , respectively. Hence, it is clear that Y is

greater than or equal to X. So it is important to compute the duration he was alive

after committing the accident.

(ii) Suppose a system collapsed at an unknown time. It has been found that the system

failed due to attack by a malware, but it is not known when the system was attacked.

So if we represent the failure time of the system by a random variable Y and X

is the time when the system was attacked by the malware, then, it is known that

X 6 Y . Now the question is- how much time the system had been running after

the attack?

(iii) Consider a two component parallel system, where the system runs with the help

of any of the components, failed at an unknown time due to failure of both the

components. Assume that, the first component failed before the second at a random

time X while the second component failed at a random time Y . So the same question

arises as before, how much time the system had been running after the failure of

the first component?

Let X be the lifetime of a system/component observed to fail at a random time Y , then

the inactivity time of X at a random time Y is defined as X(Y ) = (Y −X|X 6 Y ). ITRT

was first introduced by Li and Zuo (2004). It is important in forensic science, software

reliability testing, and many other applied areas. It is also used in medical science to
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describe the incubation period of a disease. For details, a person suffering from a disease

might not have got it instantly, rather he may have its agent a long time back. Every

individual has some immunity power to fight back with disease agents, but the degree to

which they have this immunity decides whether the person will have the disease or not.

Thus, if the person finally gets the disease then there is a difference between the times of

being infected by the disease agent and the time finally having the disease. Discovering

these times is a challenging task due to randomness. Let X be the time of being infected

by the disease agent and Y be the time of having the disease. Then X(Y ) represents the

time between infection by the disease agent and the beginning of the disease, which is

also known as incubation period or dormant season. Each individual will have a different

incubation period based on his immunity power. For example, it is estimated that the

incubation period of COVID-19 is between 2 to 14 days, which is random.

Let F(Y ) and F (Y ) be the distribution and survival functions of X(Y ), respectively. If

X and Y are mutually independent and have a common support Θ, then

F(Y )(x) =

∫
Θ

[F (y)− F (y − x)]dG(y)∫
Θ
F (y)dG(y)

and

F (Y )(x) =

∫
Θ
F (y − x)dG(y)∫
Θ
F (y)dG(y)

.

When X and Y are mutually non-independent then the survival function of X(Y ) is given

by the following

F (Y )(x) =

∫
Θ
Fθ(θ − x)dG(θ)∫
Θ
Fθ(θ)dG(θ)

,

where Fθ is the distribution function of Xθ d
= (X|Y = θ), θ > 0.

In a parallel line with RLRT, the stochastic properties of ITRT have also been inves-

tigated in the literature by many researchers. Li and Zuo (2004) established a number of

stochastic comparisons and ageing properties for X(Y ) taking X and Y independent. They

showed that, if X is DRHR then X(Y1) 6st X(Y2) and, if X is IMIT then X(Y1) 6icx X(Y2)

under the assumption Y1 6hr Y2. They also proved that, if X is IMIT and Y is IFR then

X(Y ) is DMRL. Misra et al. (2008) strengthen some of the results of Li and Zuo (2004).

They provided conditions on X and Y under which X(Y ) has log-concave (log-convex)

probability density function. It is shown that, if Y1 6hr Y2 and X has DRHR (IRHR),
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then X(Y1) 6hr (>hr)X(Y2). They also showed that, if Y1 6hr Y2 and X has IMIT (DMIT),

then X(Y1) 6mrl (>mrl)X(Y2). Misra and Naqvi (2017) have performed some stochastic

comparisons between two ITRTs with respect to lr, hr and mrl orders assuming statisti-

cal dependence between the system lifetime and random time. They also investigated the

DFR, IFR, IMRL and DMRL ageing properties of ITRT. Recently, Amini-Seresht et al.

(2020) have investigated several stochastic orderings and ageing properties of ITRT for a

coherent system.

It is noteworthy that XY = Y(X) with probability one for continuous distributions. In

view of this fact, for all independent random variables X and Y , each result for either

RLRT or ITRT can be translated into a result for the other by exchanging the roles of X

and Y .

1.2.9 Residual Lifetime Mixture Model (RLMM)

In statistics, mixture models have a great role in the analysis of data due to their flexibility

for modeling a wide variety of random phenomena. For analyzing a data set when each

observation comes from one specific distribution, we often make some modeling assump-

tions. However, in many cases, it is restrictive and may not make intuitive sense to assume

each sample comes from the same distribution. For example, suppose a data set has been

collected on the death of patients, who had cardiovascular disease, due to COVID-19 for

everyday in April 2020 without regard to age or country. If the ignored variables (age or

country) have a bearing on the characteristic being measured, then the data are said to

come from a mixture. Consider another example, suppose one is interested in simulating

the price of a randomly chosen book from a book store. It might make sense to model

the price of paperback books separately from hardback books since paperback books are

typically cheaper than hardbacks. In this example, the price of a book will be modelled

as a mixture model. Here we have two mixture components: one is for hardback books,

and another is for paperback books. In practical situations, it is hard to find data that

are not some kind of a mixture, because there is almost always some relevant covariate

that is not observed. Let F = {F (·|θ) : θ ∈ χ} be a family of distributions indexed by a
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parameter θ. When θ is considered as a random variable Y with a distribution function

G, then the distribution function

F Y (x) =

∫
χ

F (x|θ)dG(θ),

is the mixture of F with respect to G, and G is called the mixing distribution. Formally,

a mixture model corresponds to the mixture distribution that represents the probability

distribution of observations in the overall population. Now, the corresponding survival

function is given by

F
Y

(x) =

∫
χ

F (x|θ)dG(θ).

A mixture distribution is applied when a population contains two or more subpopula-

tions and the population is found to be heterogeneous. In general, a mixture distribution

is a mixture of more than one probability distributions when random variables are drawn

from more than one populations. However, the distributions can be made up from the

same family of distribution with different parameters. The population can be univariate or

multivariate but the distributions must be of same dimensions and all must either be dis-

crete or continuous. The mixture distributions have various applications in different fields

such as agriculture, medicine, finance, epidemiology, electrophoresis, life-testing, commu-

nication, fisheries research and so on. Some interesting examples of mixture distributions

are given below:

(i) Suppose that in a certain part of the world, different kinds of epidemics such as

dengue, cholera and COVID-19, have been spread out simultaneously. Each of

these three epidemics has its own characteristics and therefore each epidemics have

a different distribution (Poisson). Thus, the population attacked by these epidemics

is a mixture distribution (mixture of Poisson distributions).

(ii) Consider a herd in a forest where elephants of different ages have different charac-

teristics and particular age group of elephants have its own distribution. It is not

possible to ascertain the age of each individual elephants in this case, therefore the

population is considered as a whole. Thus, the natural population of elephant in

the forest is a mixture of the populations.
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Recall that, the residual lifetime of X at age t (> 0) is defined as Xt = (X− t|X > t).

Then the corresponding conditional survival function of Xt is given by

F t(x) =
F (x+ t)

F (t)
.

It is known that in many practical circumstances the age parameter t may not be constant

due to various reasons, and the occurrence of heterogeneity is sometimes unpredictable

and unexplained. The heterogeneity sometimes may not be possible to be neglected. In

reliability engineering applications, one encounters situations where used components of

some random past age are incepted into operation as spares. Here random past age of a

spare is described by a random variable. Consider a population of used devices, which

are still in working conditions, with different ages t1, t2 and t3, say. So the population

is represented as mixture where these three types of used devices with different ages

are combined. Here the age parameters exhibit random behaviour and are considered as

random variable as it varies from one used device to another one. Suppose that the random

behaviour of the age is described by a random variable Y with distribution function G.

For simplicity, assume that the support of Y is also [0,∞). To account the influence of the

random ages on the residual lifetime distribution and to handle the heterogeneity of the

age parameter t in residual lifetime family of distributions, Kayid and Izadkhah (2015b)

introduced the concept of residual lifetime mixture model (RLMM) (also called extended

mixture model) with survival function

F
Y

(x) =

∫ ∞
0

F (x+ y)

F (y)
dG(y), (1.2.3)

which can be interpreted as the average survival probability of Xt with respect to the

random age Y . Denote by XY , the random variable that has the survival function (1.2.3)

with baseline random variable X and mixing random age Y . Then, the distribution

function of XY is given by

F Y (x) =

∫ ∞
0

F (x+ y)− F (y)

F (y)
dG(y).

The random variable XY can be used to study the residual lifetimes of the devices

in the total population. Consider a company that sells second hand aircraft of different
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models. Suppose that used aircrafts of a model (say, Model 1) that are put on sale has a

random past life, the time for which this model aircrafts have been used before being put

on sale. Let the generic life of this model aircrafts are also random. Now, for a buyer, who

wants to buy a second hand aircraft in this model is interested to know the remaining

life/residual life of the aircrafts of this model.

In the literature, the notion of residual lifetime mixture model (1.2.3) has been con-

sidered as residual life at random age (RLRA), see for example, Finkelstein (2002b),

Finkelstein and Vaupel (2015), Hazra et al. (2017), Cha and Finkelstein (2018) and Li

and Fang (2018). It is crucial for life tables, and widely used in demography and actuarial

applications.

Recently, a great attention has been paid on stochastic comparisons and ageing notions

of mixture model due to its significant applications in risk theory, reliability and various

areas of applied probability and engineering. If mixture models have the same/different

kind of mixing distributions and same as well as different generic distributions, then it

might be of interest to compare the residual lifetimes of these models. Under the egis

of RLRA, stochastic comparisons were investigated by Finkelstein and Vaupel (2015)

and Cha and Finkelstein (2018). Hazra et al. (2017) studied stochastic comparisons

for the random age and the remaining lifetime based on st, hr, lr and mrl orders, by

choosing same/different generic distributions and same/different random ages. They also

studied DFR, DLR and IMRL ageing classes. Li and Fang (2018) discussed stochastic

comparisons for the residual lifetime at random ages in the context of statistical depen-

dence between the system lifetime and the random ages based on st, hr and lr orders,

by choosing same/different generic distributions and same/different random ages. Kayid

and Izadkhah (2015b) discussed stochastic comparisons for the mixtures of residual life

distributions based on st, hr, lr, rh and mrl orders. In addition to this, DFR, DLR and

IMRL ageing classes for this model has also been studied by them. More recently, fol-

lowing the same spirit, Misra and Naqvi (2018b) further provided stochastic comparisons

of RLMM based on lr, hr, rh and mrl orders, by choosing different baseline distributions

and different mixing distributions.
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The study on RLMM was inspired by the concept of RLRT, where the random time is

considered as random age because it comes from a mixture of a population. One natural

question may therefore arise, what is the difference between RLRT and RLMM/RLRA?

Typically, RLRT and RLMM are based on different mechanisms, and this point is elu-

cidated in the following example. Consider the case of kidney recipient. Suppose the

random variable Y denotes the time for which the kidney have been used (initial age)

before being transplanted and X is the total life of the kidney. Now, if a kidney is di-

rectly taken from a known source, then the remaining lifetime of that kidney would be

defined by RLRT XY . But, when the kidney is purchased (picked up at random) from

a lot/mixture of a selling foundation, then the remaining lifetime of the kidney would

be defined by RLMM/RLRA XY . RLRT and RLMM are mainly different in the prob-

ability mechanism of the unknown random time. In the former, researchers take the

following viewpoint: a system and one associated instrument (either observable or not)

start to operate at the same time, and the system obtains the remaining lifetime, coined

RLRT, if the instrument fails before the system. In the later, the probability mechanism

is addressed in the following way: from a large number of statistically identical objects

undergoing an ageing process and thus having different ages (usually unobservable), one

object is randomly selected and attains the remaining lifetime, which is called RLMM.

For a detailed discussion on the connection between RLRT and RLMM one may refer to

Li and Fang (2018).

1.3 The Aim of the Thesis Work

The notions of stochastic orders and the classes of life distributions have a long, exciting

and stormy history. Having played important roles in reliability theory, survival analy-

sis, maintenance policies, and many other areas of applied probability, both stochastic

orders and the classes of life distributions received much attention during the last few

decades. In the literature, several stochastic orders and the classes of life distributions are

defined. Here we consider only those stochastic orders and life distribution classes which

are based on residual life and inactivity time. These stochastic orders are mainly based
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on the comparison of some measures associated with the residual life and inactivity time

random variables. In the past few decades, the literature on stochastic orders and the

(ageing) classes of life distributions for residual life and inactivity time at a fixed time has

grown quite voluminous. But, less works seem to have been done for RLRT (including

RLMM) and ITRT. The literature survey done so far reveals that there is a good scope

to carry out further research on several problems of orderings and ageing properties of

RLRT, ITRT and RLMM. Stochastic comparisons and ageing notions of RLRT, RLMM

and ITRT have received much attention in the last two decades. For RLRT and ITRT,

the stochastic comparisons are conducted under certain conditions on the concerned total

life and the random time. Most of these comparisons have been made with respect to

st, hr, lr and mrl orders for one and/or two sample problems. Some stochastic compar-

ison results in terms of s-FR ordering have also been obtained for RLRT. Furthermore,

several ageing properties have been investigated for RLRT (viz. ILR, IFR, IMRL, s-IFR

and their dual classes). However, for ITRT, the IFR, DFR, IMRL and DMRL properties

have only been discussed. In addition, stochastic comparisons of two different RLMMs

having different mixing distributions have been performed with respect to st, hr, rh, lr

and mrl orders. Preservation of some ageing classes has also been looked into for this

model. So far, to the best of our knowledge, no work has been investigated related to

variablity/dispersion measures for RLRT, ITRT and RLMM. Moreover, the results avail-

able in the literature are not sufficient for stochastic comparisons of RLRT and/or ITRT

in two sample problem (under independence/dependence structure) based on rh, mit and

s-FR orderings, and their associated classes of life distributions. In this thesis, we shall

mainly be concerned with the study of stochastic properties of RLRT (including RLMM)

and ITRT. Here we extend, generalize and unify the stochastic orders and the (ageing)

classes of life distributions for RLRT, ITRT and RLMM in connection with residual life,

inactivity time and variability measures.

In this thesis, we have two goals. Firstly, we think it best to confine ourselves to

perform a detailed treatment of stochastic comparisons and (ageing) classes of life distri-

butions for RLRT and ITRT. We develop a theoretical frame work for stochastic properties

of RLRT and ITRT under independent and dependent scenarios. We also apply various
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(generalized) stochastic orderings for the comparisons of RLRTs and ITRTs, and study

the notion of life distribution classes. The second goal is to consider the residual life-

time mixture models having different base line distributions as well as different mixing

distributions. We investigate preservation of several stochastic orders (and ageing prop-

erties) under this model at the disposal of the highest variability in the components of the

model. We also look into the potential applications of the results derived in this thesis.

The following section will sketch the investigation of the present thesis.

1.4 A Brief Discussion on the Studied Issues

The present thesis is organized into seven chapters of which Chapter 1 is introductory.

In this chapter a concise survey of the literature concerned with the topic and motivation

of the thesis have been provided. In the remaining part, the topic is expanded in the

surcharged atmosphere of new arrivals of research articles on residual life and inactivity

time at random time. In this section, a brief contribution of the rest of the chapters has

been highlighted.

In Chapter 2, we enhance the study of residual life at random time and inactivity

time at random time taking independency between the generic life and random time. We

provide some further results on stochastic comparisons of RLRTs and ITRTs. First, we

discuss some stochastic orderings results for ITRT in two sample problems when they are

observed to fail at two different random times. In particular, first we focus on stochastic

comparisons with respect to lr, hr and mrl orders, and then vrl order. Some preliminary

study on VIT order and IVIT class have also been made. Then, with the help of some

sufficient conditions, we compare two RLRTs or ITRTs based on vrl order. The DVRL

ageing class has also been studied for RLRT. The work reported here has been published

in Communications in Statistics- Theory & Methods.

In the literature, lot of work has been done for RLRT and ITRT, where two RLRTs

or ITRTs have been compared based on st, hr, mrl and lr orders. In Chapter 3, first we

investigate some more stochastic ordering results for RLRT, where we perform stochastic

comparisons of XY1 and XY2 , the residual lives of X at the different random times Y1
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and Y2, respectively. With the help of some sufficient conditions we compare them based

on rh, mit and vit orders. Then, we compare two ITRTs of the same random variable

X having different random times Y1 and Y2 based on rh, mit and vit orders under the

assumption that X and Y1 (or Y2) are statistically independent. Finally, DRHR, IMIT

and IVIT classes of life distributions for ITRT have been studied. One paper based on

this chapter has been published in Communications in Statistics- Theory & Methods.

Stochastic comparisons and ageing properties of RLRT/ITRT taking independency

between generic lifetime and random time have been investigated in Chapters 2-3. But,

they may not necessarily be independent. In Chapter 4, we consider non-independency

between these random variables and obtain stochastic properties of RLRT and ITRT

based on variance residual life. To this aim, first we deal with some stochastic compar-

ison results on RLRT/ITRT in one sample problem. By assuming hr order between Z1

and Z2 we compare two ITRTs, X(z1) and X(Z2), as well as two RLRTs, XZ1 and XZ2

based on vrl order. We also compare these two RLRTs and ITRTs in terms of vrl order

by assuming rh order between Z1 and Z2. Then, we provide stochastic comparisons of

two systems failed at two different random times or having different random ages based

on vrl order. We also study various ageing notions of RLRT and ITRT based on IVRL

and DVRL ageing classes. Some applications of the results derived in this chapter are

also illustrated. One article, containing the work discussed here, has been accepted in

Communications in Statistics- Theory & Methods. Online First.

In Chapter 5, we consider generalized stochastic ordering (s-FR) and preservation

of some generalized ageing classes (viz. s-IFR, s-DFR) for RLRT and ITRT, where s is

a nonnegative integer. First, we carry out stochastic comparisons of RLRTs and ITRTs

under s-FR ordering in two sample problems having different random ages or observed

to fail at same/different random times. Later, we discuss some new properties of s-DFR

(s-IFR) ageing class on the RLRT. The results are interesting in the sense that they give

some existing results with less sufficient conditions. We study the preservation properties

of s-DFR class for RLRT, where we show if X is s-DFR then so is XY . This theorem

strengthen the theorem of Cai and Zheng (2012) for s-DFR class in the sense that the

extra DRHR property on Y has been relaxed here. A natural question, therefore, may
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arise, whether the DRHR property on Y for s-IFR class can be relaxed. We address this

question through an example. For the converse, we show that if Y is DRHR and XY is

s-DFR then X is s-DFR. Further, it is shown that ILR (DLR) ageing class is preserved for

RLRT and ITRT. Finally, we provide an application in reliability theory, where we com-

pare the lifetimes of two parallel systems. The results strengthen some results available

in the literature. Part of the work done in this chapter has been published in Metrika.

In Chapter 6, we enrich the study of stochastic comparisons and ageing properties for

residual lifetime mixture models. To this aim, first we provide few simple characterization

results and then compare two different mixture models having different baseline distri-

butions as well as two different mixing distributions based on lr, hr, mrl and vrl orders.

Later, we develop some sufficient conditions which lead to the stochastic comparisons of

these mixture models in terms of rh, mit and vit orders. Furthermore, under the forma-

tion of the proposed model we show that ILR, IFR, DMRL, IVRL and DVRL classes

are preserved. Some examples to illustrate the applications of the results derived in this

chapter to guaranteed lead times and series system are also investigated. A manuscript

based on this chapter has been accepted in Mathematical Methods of Operations Research.

Finally, in Chapter 7, we summarize the major conclusion of the present study along

with some possibilities of future research followed by a list of relevant references. It is to

be mentioned here that a list of papers published/communicated based on the thesis is

also attached at the end.

In order to make each chapter as independent as possible, some useful results may

be found to repeated in the upcoming chapters. Also, a few definitions of stochastic

orders and (ageing) classes of life distributions have been reproduced with their equivalent

form(s).



Chapter 2

Some Stochastic Comparison Results

for Residual Life and Inactivity Time

at Random Time
1

In this chapter, we enhance the study of residual life at random time (RLRT) and inac-

tivity time at random time (ITRT). To this aim, first we provide some stochastic ordering

results among ITRT in two sample problems when they fail at two different random times.

Then, we develop some sufficient conditions which lead to the stochastic comparisons of

RLRTs and ITRTs based on variance residual life order. The results are expected to be

useful in reliability theory, forensic science, queuing theory and actuarial science.

2.1 Introduction

In recent decades the stochastic comparison of random variables has received much at-

tention due to its important role in reliability theory, life testing, actuarial science, and

many other areas of applied probability. The comparison of two random quantities and

conceptions of ageing are also one of the main objectives of statistics. For details on

1The results discussed in this chapter have been published in Communications in Statistics- Theory

& Methods, 2018, 47(2), 372-384.
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various stochastic orders and ageing classes one may refer to the famous books by Shaked

and Shanthikumar (2007), Belzunce et al. (2015), Müller and Stoyan (2002), and Barlow

and Proschan (1981), among others.

Let the random variable X denote the lifetime of a unit, having an absolutely continu-

ous distribution function F , survival function F = 1−F and probability density function

f . Let Xt = (X−t|X > t) be the residual life of X at time t > 0 and X(t) = (t−X|X 6 t)

be the inactivity time (IT) at time t > 0. Their respective reliability functions are given

by

P (Xt > x) =
F (x+ t)

F (t)
and P (X(t) > x) =

F (t− x)

F (t)
, x, t > 0.

So, the mean residual life (MRL) mX(t) and variance residual life (VRL) σ2
X(t) of X can

be defined as

mX(t) =

∫∞
t
F (x)dx

F (t)
, 0 6 t 6 x and σ2

X(t) = E[(X − t)2|X > t]− [mX(t)]2 , t > 0.

Similarly, the mean inactivity time (MIT) and variance inactivity time (VIT) of X are

defined as

mX(t) =

∫ t
0
F (x)dx

F (t)
, 0 6 x 6 t and σ2

X(t) = E
[
(t−X)2|X 6 t

]
− [mX(t)]2 , t > 0.

Let X and Y be two nonnegative independent random variables. The residual life of X

at a random time Y (RLRT) is denoted by XY and is defined as XY = (X − Y |X > Y ).

The RLRT is one of the important notions in reliability and queuing theory. It represents

the actual working time of the standby unit if X is regarded as the total random life of

a warm standby unit with its age Y , and the idle time of a server in a classical GI/G/1

queuing system can also be expressed as a RLRT (see Marshall, 1968). The inactivity time

at a random time Y (ITRT) is denoted by X(Y ) and is defined as X(Y ) = (Y −X|X < Y ).

Stochastic comparison results and ageing properties of residual life and inactivity time at

a random time have been investigated by Yue and Cao (2000), Li and Zuo (2004), Misra

et al. (2008), Cai and Zheng (2012) and Dewan and Khaledi (2014). For some discussions

on VRL and VIT, one may refer to Gupta (2006), Mahdy (2012), Kayid and Izadkhah

(2016). In this chapter, we mainly focus our attention to obtain some results with the help

of monotonicity, ordering, and the associated ageing classes of life distributions of VRL
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and VIT. Let FY and F(Y ) be the distribution functions of XY and X(Y ), respectively. If

X and Y are mutually independent and have a common support Θ, then their survival

functions are, respectively,

F Y (x) =

∫
Θ
F (x+ y)dG(y)∫
Θ
F (y)dG(y)

or equivalently,

F Y (x) =

∫
Θ
G(y − x)dF (y)∫
Θ
G(y)dF (y)

and

F (Y )(x) =

∫
Θ
F (y − x)dG(y)∫
Θ
F (y)dG(y)

or equivalently,

F (Y )(x) =

∫
Θ
G(y + x)dF (y)∫
Θ
G(y)dF (y)

.

We first recall the definitions of some stochastic orders that will be used in the sequel.

Definition 2.1.1. For two random variables X and Y , X is said to be smaller than Y in

(a) usual stochastic order (denoted by X 6st Y ) if F (x) 6 G(x) for all x > 0;

(b) hazard rate order (denoted by X 6hr Y ) if F (x)/G(x) is decreasing in x > 0;

(c) reverse hazard rate order (denoted by X 6rh Y ) if F (x)/G(x) is decreasing in x > 0;

(d) likelihood ratio order (denoted by X 6lr Y ) if f(x)/g(x) is decreasing in x > 0;

(e) mean residual life order (denoted by X 6mrl Y ) if mX(t) 6 mY (t) for all t > 0, or

equivalently, ∫∞
t
F (u)du∫∞

t
G(u)du

is decreasing in t > 0;

(f) mean inactivity time order (denoted by X 6mit Y ) if mX(t) > mY (t) for all t > 0,

or equivalently, ∫ t
0
F (u)du∫ t

0
G(u)du

is decreasing in t > 0;
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(g) variance residual life order (denoted by X 6vrl Y ) if∫∞
t

∫∞
x
F (u)dudx

F (t)
6

∫∞
t

∫∞
x
G(u)dudx

G(t)
,

or equivalently, ∫∞
t

∫∞
x
F (u)dudx∫∞

t

∫∞
x
G(u)dudx

is decreasing in t > 0;

(h) variance inactivity time order (denoted by X 6vit Y ) if∫ t
0

∫ x
0
F (u)dudx

F (t)
>

∫ t
0

∫ x
0
G(u)dudx

G(t)
,

or equivalently, ∫ t
0

∫ x
0
F (u)dudx∫ t

0

∫ x
0
G(u)dudx

is decreasing in t > 0;

(i) increasing convex order (denoted by X 6icx Y ) if
∫∞
x
F (u)du 6

∫∞
x
G(u)du.

The following ageing classes are closely related to our discussion.

Definition 2.1.2. A random variable X is said to have an

(a) increasing (resp. decreasing) failure rate (IFR (resp. DFR)) if Xt is stochastically

decreasing (resp. increasing) in t > 0;

(b) increasing (resp. decreasing) mean residual life (IMRL (resp. DMRL)) if mX(t) is

increasing (resp. decreasing) in t > 0;

(c) increasing mean inactivity time (IMIT) if mX(t) is increasing in t > 0;

(d) increasing (resp. decreasing) variance residual life (IVRL (resp. DVRL)) if∫∞
t

∫∞
x
F (u)dudx∫∞

t
F (x)dx

is increasing (resp. decreasing) in t > 0,

or equivalently,∫∞
t

∫∞
x
F (u)dudx

F (t)
is increasing (resp. decreasing) in t > 0;
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(e) increasing variance inactivity time (IVIT) if∫ t
0

∫ x
0
F (u)dudx∫ t

0
F (x)dx

is increasing in t > 0,

or equivalently, ∫ t
0

∫ x
0
F (u)dudx

F (t)
is increasing in t > 0.

In the present chapter, we provide some further results on stochastic comparisons of

RLRTs and ITRTs. In Section 2.2, we make stochastic comparisons between (X1)(Y1)

and (X2)(Y2), the IT of two systems failed at two different random times. We also show

that if Y has DFR and X has IMIT then X(Y ) has IMRL. In Section 2.3, we strengthen

some of the results of Li and Xu (2006) on mit order to vit order. We also establish vrl

order between XZ and YZ and also between X(Z) and Y(Z) under the assumptions that

Z possesses a specified ageing property and X, Y are ordered with respect to a certain

stochastic order. We also prove that if X is IFR and Z is IVIT, then XZ is DVRL.

2.2 Stochastic Comparisons and Ageing Properties

for ITRT

At first, we briefly review the stochastic comparisons of IT of two systems observed to fail

at the same random time. In order to make the presentation self-contained, we restate

the following theorem. The proof is a simple consequence of the results available in the

literature. It has been pointed out by Li and Zuo (2004) that each result for either RLRT

or ITRT, in view of XY = Y(X) for continuous distributions, can be translated into a

result for the other by exchanging the roles of X and Y .

Theorem 2.2.1. Let X and Y be two nonnegative random variables representing the

lifetimes of two systems failed at random time Z. Let Z be independent of X and Y . If

i. X 6rh Y and Z is DFR (IFR), then X(Z) 6hr (>hr)Y(Z);

ii. X 6rh Y and Z is IMRL (DMRL), then X(Z) 6mrl (>mrl)Y(Z);
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iii. X 6lr Y and Z is ILR (DLR), then X(Z) 6lr (>lr)Y(Z).

Now we consider the stochastic comparisons of IT of two systems observed to fail

at two different random times. Before discussing the theorem, we provide the following

lemma in line with Dewan and Khaledi (2014). First, recall from Karlin (1968) that a

nonnegative function ψ : X × Y → R, the set of real numbers, is said to be TP2 (totally

positive of order 2) if ψ(x, y)ψ(x∗, y∗) > ψ(x, y∗)ψ(x∗, y) for all x, x∗ ∈ X and y, y∗ ∈ Y

such that x 6 x∗ and y 6 y∗, where X and Y are subsets of the real line. ψ is said to be

RR2 (reverse regular of order 2) if the inequality is reversed. For proving the lemma, we

use the following result of Shaked and Shanthikumar (2007).

Proposition 2.2.1. If X 6st Y and φ is any increasing (decreasing) function, then

E[φ(X)] 6 (>)E[φ(Y )].

Lemma 2.2.1. Let hi(x, θ), i = 1, 2, be a nonnegative real valued function on R×X and

li(θ) be a nonnegative real valued function on X, where X is a subset of real line. If

(i) h2(x,θ)
h1(x,θ)

is increasing in x and θ,

(ii) l2(θ)
l1(θ)

is increasing in θ, and

(iii) if either h1(x, θ) or h2(x, θ) is TP2 in (x, θ),

then

si(x) =

∫
X
hi(x, θ)li(θ)dθ

is TP2 in (i, x), where li is a continuous function with
∫
X li(θ)dθ <∞.

Proof: First, we prove the required result when h1(x, θ) is TP2 in (x, θ). Let Θ∗(X)

denote a random variable with density function given by

h1(x, θ)l1(θ)∫
X h1(x, θ)l1(θ)dθ

.

Then, the assumption (iii) is equivalent to the fact that Θ∗(x1) 6lr Θ∗(x2) for x1 6 x2,
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which in turn implies that Θ∗(x1) 6st Θ∗(x2). Let x1 6 x2, then

s2(x2)

s1(x2)
=

∫
X h2(x2, θ)l2(θ)dθ∫
X h1(x2, θ)l1(θ)dθ

=

∫
X

h2(x2, θ)l2(θ)

h1(x2, θ)l1(θ)

h1(x2, θ)l1(θ)∫
X h1(x2, θ)l1(θ)dθ

dθ

>
∫
X

h2(x2, θ)l2(θ)

h1(x2, θ)l1(θ)

h1(x1, θ)l1(θ)∫
X h1(x1, θ)l1(θ)dθ

dθ

>
∫
X

h2(x1, θ)l2(θ)

h1(x1, θ)l1(θ)

h1(x1, θ)l1(θ)∫
X h1(x1, θ)l1(θ)dθ

dθ

=

∫
X h2(x1, θ)l2(θ)dθ∫
X h1(x1, θ)l1(θ)dθ

=
s2(x1)

s1(x1)
,

where the first inequality above follows on using assumption (i) that h2(x,θ)
h1(x,θ)

is increasing

in θ for each x, assumption (ii) and Proposition 2.2.1. Also, the second inequality follows

from the assumption (i) that h2(x,θ)
h1(x,θ)

is increasing in x for each θ. Hence s2(x)
s1(x)

is increasing

in x, which implies that si(x) is TP2 in (i, x). Again, let h2(x, θ) be TP2 in (x, θ). Also,

let Ψ∗(X) denote a random variable with density function given by

h2(x, θ)l2(θ)∫
X h2(x, θ)l2(θ)dθ

.

Then, the assumption (iii) is equivalent to the fact that Ψ∗(x1) 6lr Ψ∗(x2) for x1 6 x2,

which implies that Ψ∗(x1) 6st Ψ∗(x2). Let x1 6 x2, then

s1(x2)

s2(x2)
=

∫
X h1(x2, θ)l1(θ)dθ∫
X h2(x2, θ)l2(θ)dθ

=

∫
X

h1(x2, θ)l1(θ)

h2(x2, θ)l2(θ)

h2(x2, θ)l2(θ)∫
X h2(x2, θ)l2(θ)dθ

dθ

6
∫
X

h1(x2, θ)l1(θ)

h2(x2, θ)l2(θ)

h2(x1, θ)l2(θ)∫
X h2(x1, θ)l2(θ)dθ

dθ

6
∫
X

h1(x1, θ)l1(θ)

h2(x1, θ)l2(θ)

h2(x1, θ)l2(θ)∫
X h2(x1, θ)l2(θ)dθ

dθ

=

∫
X h1(x1, θ)l1(θ)dθ∫
X h2(x1, θ)l2(θ)dθ

=
s1(x1)

s2(x1)
,

where the above first inequality follows on using assumptions (i), (ii) and Proposition 2.2.1.
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Also, the second inequality follows from the assumption (i). Hence s1(x)
s2(x)

is decreasing in

x. Or equivalently, s2(x)
s1(x)

is increasing in x, which implies that si(x) is TP2 in (i, x).

Theorem 2.2.2. Let X1, Y1 and X2, Y2 be independent nonnegative random variables.

Denote (Xi)(Yi)
the IT of Xi at random time Yi, i = 1, 2. Suppose that X1 6lr X2.

i. If Y1 6hr Y2 and either Y1 or Y2 is DFR, then (X1)(Y1) 6hr (X2)(Y2);

ii. If Y1 6mrl Y2 and either Y1 or Y2 is IMRL, then (X1)(Y1) 6mrl (X2)(Y2);

iii. If Y1 6lr Y2 and either Y1 or Y2 is ILR, then (X1)(Y1) 6lr (X2)(Y2).

Proof: (i) Yi is DFR iff Gi(y+ x) is TP2 in (x, y) ∈ (0,∞)× (0,∞). On the other hand,

Y1 6hr Y2 iff G2(u)

G1(u)
is increasing in u > 0 which in turn implies that G2(y+x)

G1(y+x)
is increasing in

y > 0 as well as x > 0, and X1 6lr X2 iff f2(x)
f1(x)

is increasing in x > 0. Hence the conditions

of Lemma 2.2.1 are satisfied by replacing the functions li(θ) with fi(x) and hi(x, θ) with

Gi(y + x), i = 1, 2. Hence from Lemma 2.2.1, we have∫ ∞
y

Gi(y + x)fi(x)dx is TP2 in (i, y) ∈ {1, 2} × (0,∞).

Or equivalently, ∫∞
y
G2(y + x)dF2(x)∫∞

y
G1(y + x)dF1(x)

is increasing in y > 0.

Hence (X1)(Y1) 6hr (X2)(Y2).

(ii) Let F
(i)

(Yi)
be the survival function of the random variable (Xi)(Yi). Yi is IMRL iff∫ ∞

x+y

Gi(u)du is TP2 in (x, y) ∈ (0,∞)× (0,∞). (2.2.1)

On the other hand Y1 6mrl Y2 implies∫∞
x+y

G2(u)du∫∞
x+y

G1(u)du
is increasing in x > 0 and y > 0. (2.2.2)

Also, X1 6lr X2 iff

f2(x)

f1(x)
is increasing in x > 0. (2.2.3)
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Therefore, on using (2.2.1), (2.2.2) and (2.2.3) in Lemma 2.2.1, we have∫ ∞
0

(∫ ∞
x+y

Gi(u)du

)
fi(x)dx is TP 2 in (i, y) ∈ {1, 2} × (0,∞).

This gives that∫∞
0

(∫∞
y
Gi(u+ x)du

)
fi(x)dx∫∞

0
Gi(x)fi(x)dx

is TP2 in (i, y) ∈ {1, 2} × (0,∞),

or equivalently,∫ ∞
y

∫∞
0
Gi(u+ x)fi(x)dx∫∞

0
Gi(x)fi(x)dx

du is TP2 in (i, y) ∈ {1, 2} × (0,∞).

Hence ∫ ∞
y

F
(i)

(Yi)
(u)du is TP2 in (i, y) ∈ {1, 2} × (0,∞),

which in turn gives that ∫∞
y
F

(2)

(Y2)(u)du∫∞
y
F

(1)

(Y1)(u)du
is increasing in y > 0.

Therefore, (X1)(Y1) 6mrl (X2)(Y2) proving (ii).

(iii) The density function of (Xi)(Yi) is

f(Yi)(y) = − d

dy
F (Yi)(y) =

∫∞
0
gi(y + x)fi(x)dx

P (Yi > Xi)
, i = 1, 2.

In Lemma 2.2.1, replace li(θ) with fi(x) and hi(x, θ) with gi(y + x) for i = 1, 2. The

random variable Yi is ILR iff gi(y + x) is TP2 in (x, y) ∈ (0,∞) × (0,∞). On the other

hand Y1 6lr Y2 iff g2(u)
g1(u)

is increasing in u > 0 which in turn implies that g2(y+x)
g1(y+x)

is increasing

in y > 0 as well as x > 0, and X1 6lr X2 iff f2(x)
f1(x)

is increasing in x > 0. Combining these

observations, from Lemma 2.2.1, we have∫ ∞
y

gi(y + x)fi(x)dx is TP2 in (i, y) ∈ {1, 2} × (0,∞).

Or equivalently, ∫∞
y
g2(y + x)f2(x)dx∫∞

y
g1(y + x)f1(x)dx

is increasing in y > 0.

Hence (X1)(Y1) 6lr (X2)(Y2). �

The following results are due to Li and Zuo (2004) which will be recalled to obtain

Theorem 2.2.3.
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Proposition 2.2.2. Suppose that X, Y1 and Y2 are mutually independent. If Y1 6hr Y2

and X is IMIT then X(Y1) 6icx X(Y2).

Proposition 2.2.3. Assume that X and Y are independent random variables. If Y has

IFR and X has IMIT then X(Y ) has DMRL.

The following theorem is in the same line of Proposition 2.2.3 where Y is assumed to

have DFR ageing property.

Theorem 2.2.3. Assume that X and Y are independent random variables. If Y has DFR

and X has IMIT then X(Y ) has IMRL.

Proof: Denote by (X(Y ))t = (X(Y ) − t|t 6 X(Y )). Then its survival function is given by

F (Y )(s|t) =
F (Y )(t+ s)

F (Y )(t)

=

∫∞
0
F (y − t− s)dG(y)∫∞

0
F (y − t)dG(y)

=

∫∞
0
F (u− s)dG(u+ t)∫∞

0
F (u)dG(u+ t)

.

Let Yi = Ui − ti for 0 < t1 < t2 and i = 1, 2 where U1 and U2 are independent and identi-

cally distributed with a common distribution function G. Denote by Gi the distribution

function of Yi, i = 1, 2. Then, we have Gi(u) = G(u+ ti) and

F (Y )(s|ti) =

∫∞
0
F (u− s)dGi(u)∫∞

0
F (u)dGi(u)

= F (Yi)(s), i = 1, 2.

Since Y is DFR, it holds that Y1 6hr Y2. Also, X is IMIT which on using Proposition

2.2.2 gives X(Y1) 6icx X(Y2). Or equivalently, (X(Y ))t1 6icx (X(Y ))t2 for all t1 < t2. Ac-

cording to Theorem 4.A.51 of Shaked and Shanthikumar (2007), X is IMRL if and only

if Xt1 6icx Xt2 for all t1 6 t2. Thus, X(Y ) is IMRL. �

The following result is reproduced from a theorem of Yue and Cao (2000).

Proposition 2.2.4. Suppose that X, Y1 and Y2 are independent nonnegative random vari-

ables. If Y1 6rh Y2 and X has DMRL then E(XY1) > E(XY2).
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Theorem 2.2.4. Suppose that X, Y1 and Y2 are independent nonnegative random vari-

ables. If Y1 6hr Y2 and X has IMIT then E(X(Y1)) 6 E(X(Y2)).

Proof: Let X∗ = −X, Y ∗1 = −Y2 and Y ∗2 = −Y1. Then, Y1 6hr Y2 implies that

Y ∗1 6rh Y
∗

2 . Moreover, X has IMIT implies that X∗ has DMRL. On using Proposition

2.2.4, it follows that E(X∗Y ∗1 ) > E(X∗Y ∗2 ). Hence, the result follows on observing that

X∗Y ∗1 (resp. X∗Y ∗2 ) has the same distribution as that of X(Y2) (resp. X(Y1)).

2.3 Results for RLRT and ITRT based on vrl (vit)

Order

In this section, first we carry out a preliminary study on vit order and IVIT class. Later we

provide some stochastic comparison results on RLRT and ITRT in two sample problems

with certain ageing properties. Let us start with a simple result. Before that consider the

following result (cf. Theorem 39 of Hu et al., 2001).

Proposition 2.3.1. If Xt 6vrl X for any t > 0, then X is of DVRL.

Now, the IVIT class is studied in the following theorem based on vit order.

Theorem 2.3.1. If Xt 6vit X for any t > 0, then X is of IVIT.

Proof: For any t > 0, s > 0 and y > 0, Xt 6vit X is equivalent to∫ s
0

∫ y
0
Ft(x)dxdy

Ft(s)
>

∫ s
0

∫ y
0
F (x)dxdy

F (s)
,

which in turn gives that∫ s

0

∫ y

0

F (t+ x)− F (t)

F (t+ s)− F (t)
dxdy >

∫ s

0

∫ y

0

F (x)

F (s)
dxdy.

The above reduces to∫ s
0

∫ y
0

[F (t+ x)− F (t)]dxdy∫ s
0

∫ y
0
F (x)dxdy

>
F (t+ s)− F (t)

F (s)
.
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Or equivalently,∫ s
0

∫ y
0
F (t+ x)dxdy∫ s

0

∫ y
0
F (x)dxdy

− F (t+ s)

F (s)
>

s2

2
F (t)∫ s

0

∫ y
0
F (x)dxdy

− F (t)

F (s)
> 0,

which in turn implies that ∫ s
0

∫ y
0
F (t+ x)dxdy∫ s

0

∫ y
0
F (x)dxdy

>
F (t+ s)

F (s)
.

Hence, for any t > 0 and s, y > 0,∫ t+s
0

∫ y
0
F (x)dxdy

F (t+ s)
>

∫ s
0

∫ y
0
F (t+ x)dxdy

F (t+ s)
>

∫ s
0

∫ y
0
F (x)dxdy

F (s)
,

which asserts that X is of IVIT. �

The following example shows that the converse of the above theorem is not true.

Example 2.3.1. Let X follow the power distribution

F (x) =

 x1/2, 0 < x < 1

1, otherwise.

Then

vX(s) =

∫ s
0

∫ x
0
F (u)dudx

F (s)
=

 4
15
s2, 0 < s < 1

1
2

(
s2 − 7

15

)
, s > 1,

which is increasing in s. Thus, X is of IVIT. For s = t = 1/2, it can be shown that

vX(s) = 1/15 and

vXt(s) =

∫ s
0

∫ x
0

[F (t+ u)− F (t)] dudx

F (t+ s)− F (t)
=

43
√

2− 64

120(
√

2− 2)
< vX(s),

which asserts that Xt 6vit X is not true. �

The next result provides a useful characterization of the vit order.

Theorem 2.3.2. XY 6vit X for any Y that is independent of X if and only if Xt 6vit X

for all t > 0.
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Proof: To prove the ‘if part’, let us assume Xt 6vit X for all t > 0, which implies that∫ s
0

∫ y
0

[F (t+ x)− F (t)]dxdy∫ s
0

∫ y
0
F (x)dxdy

>
F (t+ x)− F (t)

F (s)
.

Or equivalently,∫ s

0

∫ y

0

[F (t+ x)− F (t)]dxdy >
F (t+ x)− F (t)

F (s)

∫ s

0

∫ y

0

F (x)dxdy. (2.3.1)

Now, from (2.3.1), we get∫∞
0

∫ s
0

∫ y
0

[F (t+ x)− F (t)]dxdydG(t)∫∞
0

[F (t+ s)− F (t)]dG(t)
>

∫∞
0

[
F (t+s)−F (t)

F (s)

∫ s
0

∫ y
0
F (x)dxdy

]
dG(t)∫∞

0
[F (t+ s)− F (t)]dG(t)

=

∫ s
0

∫ y
0
F (x)dxdy

F (s)
,

for any s > 0. This gives that XY 6vit X. Conversely, assume that XY 6vit X holds for

any nonnegative random variable Y independent of X. Then Xt 6vit X for all t > 0

follows by taking Y as a degenerate variable. �

The following lemmas will be used to prove the upcoming theorems.

Lemma 2.3.1. (Joag-Dev et al., 1995). Let ψ(x, y) be any TP2 function (not necessarily

a reliability function) in x ∈ X and y ∈ Y and Fi(x) be a distribution function for each i.

Denote

Hi(y) =

∫
X
ψ(x, y)dFi(x).

If F i(x) is TP2 in i ∈ {1, 2} and x ∈ X and if ψ(x, y) is increasing in x for each y, then

Hi(y) is TP2 in y ∈ Y and i ∈ {1, 2}.

Lemma 2.3.2. (Khaledi and Shaked, 2010). Let ψ(x, y) be any RR2 function (not neces-

sarily a reliability function) in x ∈ X and y ∈ Y and Fi(x) be a distribution function for

each i. Denote

Hi(y) =

∫
X
ψ(x, y)dFi(x).

If Fi(x) is TP2 in i ∈ {1, 2} and x ∈ X and if ψ(x, y) is decreasing in x for each y, then

Hi(y) is RR2 in y ∈ Y and i ∈ {1, 2}.
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Now we provide some important theorems on stochastic comparisons of RLRTs and

ITRTs based on vrl and vit orders.

Theorem 2.3.3. Assume that Z is independent of X and Y . If X 6hr Y and Z is of

IVIT, then XZ 6vrl YZ .

Proof: Denote by F1, F2 and H the distribution functions of X, Y and Z, respectively.

Since Z is of IVIT, we have for all y > 0 and M> 0∫ y+M
0

∫ x
0
H(u)dudx∫ y+M

0
H(u)du

>

∫ y
0

∫ x
0
H(u)dudx∫ y

0
H(u)du

.

Now, on using the above, we have

d

dy

(∫ y+M
0

∫ x
0
H(u)dudx∫ y

0

∫ x
0
H(u)dudx

)
=

∫ y+M
0

H(u)du∫ y
0

∫ x
0
H(u)dudx

−
∫ y

0
H(u)du(

∫ y+M
0

∫ x
0
H(u)dudx)

(
∫ y

0

∫ x
0
H(u)dudx)2

6 0.

Hence, (∫ y+M
0

∫ x
0
H(u)dudx∫ y

0

∫ x
0
H(u)dudx

)
is decreasing in y > 0.

Thus, ∫ y2−t2
0

∫ x
0
H(u)dudx∫ y1−t2

0

∫ x
0
H(u)dudx

>

∫ y2−t1
0

∫ x
0
H(u)dudx∫ y1−t1

0

∫ x
0
H(u)dudx

, (2.3.2)

for all 0 < t1 6 t2 < y1 6 y2. Denote

ψ(y, t) =


∫ y−t

0

∫ x
0
H(u)dudx, y > t

0, y < t.

Then (2.3.2) gives that

ψ(y1, t1)ψ(y2, t2) > ψ(y1, t2)ψ(y2, t1), (2.3.3)

for all (t1, t2, y1, y2) ∈ S = {(t1, t2, y1, y2) : 0 < t1 6 t2 < y1 6 y2}. It can be easily verified

that (2.3.3) is also valid for those (t1, t2, y1, y2) ∈ {(t1, t2, y1, y2) : 0 < t1 6 t2, 0 < y1 6

y2} − S. Thus, ψ(y, t) is TP2 in (y, t) ∈ (0,∞)× (0,∞). For i = 1, 2, let

Hi(t) =

∫∞
0
ψ(y, t)dFi(y)∫∞

0
H(y)dFi(y)

.
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Now, X 6hr Y implies that F i(x) is TP2 in (i, x) ∈ {1, 2}×(0,∞) and ψ(y, t) is increasing

in y > 0 for each fixed t > 0. Thus, from Lemma 2.3.1, it follows that Hi(t) is TP2 in

(i, t) ∈ {1, 2} × (0,∞). Then

H2(t)

H1(t)
=

∫∞
0
ψ(y, t)dF2(y)∫∞

0
ψ(y, t)dF1(y)

×
∫∞

0
H(y)dF1(y)∫∞

0
H(y)dF2(y)

=

∫∞
0

∫ y−t
0

∫ x
0
H(u)dudxdF2(y)∫∞

0

∫ y−t
0

∫ x
0
H(u)dudxdF1(y)

×
∫∞

0
H(y)dF1(y)∫∞

0
H(y)dF2(y)

=

∫∞
t

∫ y−t
0

∫ x
0
H(u)dudxdF2(y)∫∞

t

∫ y−t
0

∫ x
0
H(u)dudxdF1(y)

×
∫∞

0
H(y)dF1(y)∫∞

0
H(y)dF2(y)

=

∫∞
t

∫ y
t

∫ y−x
0

H(u)dudxdF2(y)∫∞
t

∫ y
t

∫ y−x
0

H(u)dudxdF1(y)
×
∫∞

0
H(y)dF1(y)∫∞

0
H(y)dF2(y)

=

∫∞
t

∫∞
x

∫ y−x
0

H(u)dudF2(y)dx∫∞
t

∫∞
x

∫ y−x
0

H(u)dudF1(y)dx
×
∫∞

0
H(y)dF1(y)∫∞

0
H(y)dF2(y)

=

∫∞
t

∫∞
x

∫ y
x
H(y − u)dudF2(y)dx∫∞

t

∫∞
x

∫ y
x
H(y − u)dudF1(y)dx

×
∫∞

0
H(y)dF1(y)∫∞

0
H(y)dF2(y)

=

∫∞
t

∫∞
x

∫∞
u
H(y − u)dF2(y)dudx∫∞

t

∫∞
x

∫∞
u
H(y − u)dF1(y)dudx

×
∫∞

0
H(y)dF1(y)∫∞

0
H(y)dF2(y)

=

∫∞
t

∫∞
x

(F 2)Z(u)dudx∫∞
t

∫∞
x

(F 1)Z(u)dudx
,

is increasing in t > 0. Hence the result follows. �

The following result is due to Li and Xu (2006).

Proposition 2.3.2. Assume that Z is independent of X and Y . If X 6hr Y and Z is of

IMIT, then XZ 6mrl YZ.

In combination with Theorem 2.3.3 and Proposition 2.3.2 it holds that, if X 6hr Y ,

then

Z is IMIT =⇒ XZ 6mrl YZ

⇓ ⇓

Z is IVIT =⇒ XZ 6vrl YZ .
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The following theorem gives the stochastic comparison of ITRT. The proof is a dual

version of Theorem 2.3.3.

Theorem 2.3.4. Assume that Z is independent of X and Y . If X 6hr Y and Z is of

IVRL, then X(Z) 6vrl Y(Z).

Proof: Denote by F1, F2 and H the distribution functions of X, Y and Z, respectively.

Since Z is of IVRL, we have for all y > 0 and M> 0,∫∞
y+M

∫∞
x
H(u)dudx∫∞

y+MH(u)du
>

∫∞
y

∫∞
x
H(u)dudx∫∞

y
H(u)du

.

Or equivalently, ∫∞
y
H(u)du

(∫∞
y+M

∫∞
x
H(u)dudx

)
∫∞
y

∫∞
x
H(u)dudx

>
∫ ∞
y+M

H(u)du.

On using this fact, we have

d

dy

(∫∞
y+M

∫∞
x
H(u)dudx∫∞

y

∫∞
x
H(u)dudx

)
= −

∫∞
y+MH(u)du∫∞

y

∫∞
x
H(u)dudx

+

∫∞
y
H(u)du

(∫∞
y+M

∫∞
x
H(u)dudx

)
(∫∞

y

∫∞
x
H(u)dudx

)2

> 0.

Hence, ∫∞
y+M

∫∞
x
H(u)dudx∫∞

y

∫∞
x
H(u)dudx

is increasing in y > 0.

Thus, ∫∞
y2+t2

∫∞
x
H(u)dudx∫∞

y1+t2

∫∞
x
H(u)dudx

>

∫∞
y2+t1

∫∞
x
H(u)dudx∫∞

y1+t1

∫∞
x
H(u)dudx

, (2.3.4)

for all 0 < t1 6 t2 < y1 6 y2. Denote

ψ(y, t) =


∫∞
y+t

∫∞
x
H(u)dudx, y > 0

0, y 6 0.

Then (2.3.4) gives that

ψ(y1, t1)ψ(y2, t2) > ψ(y1, t2)ψ(y2, t1), (2.3.5)
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for all (t1, t2, y1, y2) ∈ S = {(t1, t2, y1, y2) : 0 < t1 6 t2 < y1 6 y2}. It can be verified that

(2.3.5) is also valid for those (t1, t2, y1, y2) ∈ {(t1, t2, y1, y2) : 0 < t1 6 t2; 0 < y1 6 y2}−S.

Thus ψ(y, t) is TP2 in (y, t) ∈ (0,∞)× (0,∞). Let

Hi(t) =

∫∞
0
ψ(y, t)dFi(y)∫∞

0
H(y)dFi(y)

Now X 6hr Y gives that F i(x) is TP2 in (i, x) ∈ {1, 2} × (0,∞) and ψ(y, t) is increasing

in y > 0 for each fixed t > 0. From Lemma 2.3.1 it follows that Hi(t) is TP2 in (i, t) ∈

{1, 2} × (0,∞). Then

H2(t)

H1(t)
=

∫∞
0
ψ(y, t)dF2(y)∫∞

0
ψ(y, t)dF1(y)

×
∫∞

0
H(y)dF1(y)∫∞

0
H(y)dF2(y)

=

∫∞
0

∫∞
y+t

∫∞
x
H(u)dudxdF2(y)∫∞

0

∫∞
y+t

∫∞
x
H(u)dudxdF1(y)

×
∫∞

0
H(y)dF1(y)∫∞

0
H(y)dF2(y)

=

∫∞
0

∫∞
t

∫∞
x+y

H(u)dudxdF2(y)∫∞
0

∫∞
t

∫∞
x+y

H(u)dudxdF1(y)
×
∫∞

0
H(y)dF1(y)∫∞

0
H(y)dF2(y)

=

∫∞
0

∫∞
t

∫∞
x
H(y + u)dudxdF2(y)∫∞

0

∫∞
t

∫∞
x
H(y + u)dudxdF1(y)

×
∫∞

0
H(y)dF1(y)∫∞

0
H(y)dF2(y)

=

∫∞
t

∫∞
0

∫∞
x
H(y + u)dudF2(y)dx∫∞

t

∫∞
0

∫∞
x
H(y + u)dudF1(y)dx

×
∫∞

0
H(y)dF1(y)∫∞

0
H(y)dF2(y)

=

∫∞
t

∫∞
x

∫∞
0
H(y + u)dF2(y)dudx∫∞

t

∫∞
x

∫∞
0
H(y + u)dF1(y)dudx

×
∫∞

0
H(y)dF1(y)∫∞

0
H(y)dF2(y)

=

∫∞
t

∫∞
x

(F 2)(Z)(u)dudx∫∞
t

∫∞
x

(F 1)(Z)(u)dudx
,

is increasing in t > 0. Hence the result follows. �

In the following, we extend the above theorem in two sample problems when they fail

at two different random times.

Theorem 2.3.5. Let X1, Y1 and X2, Y2 be independent nonnegative random variables.

Assume that, X1 6lr X2. If Y1 6vrl Y2 and either Y1 or Y2 is IVRL then (X1)(Y1) 6vrl

(X2)(Y2).

Proof: Let Fi and Gi be the distribution functions of Xi and Yi, i = 1, 2, respectively.
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Yi is IVRL iff ∫ ∞
x+y

∫ ∞
t

Gi(u)dudt is TP2 in (x, y) ∈ (0,∞)× (0,∞).

On the other hand, Y1 6vrl Y2 implies that∫∞
x+y

∫∞
t
G2(u)dudt∫∞

x+y

∫∞
t
G1(u)dudt

is increasing in x > 0 and y > 0,

and X1 6lr X2 iff f2(x)
f1(x)

is increasing in x > 0. So from Lemma 2.2.1, we have∫ ∞
0

(∫ ∞
x+y

∫ ∞
t

Gi(u)dudt

)
fi(x)dx is TP2 in (i, y) ∈ {1, 2} × (0,∞).

This gives that∫∞
0

(
∫∞
y

∫∞
t
Gi(u+ x)dudt)fi(x)dx∫∞

0
Gi(x)fi(x)dx

is TP2 in (i, y) ∈ {1, 2} × (0,∞),

or equivalently,∫ ∞
y

∫ ∞
t

∫∞
0
Gi(u+ x)fi(x)dx∫∞

0
Gi(x)fi(x)dx

dudt is TP2 in (i, y) ∈ {1, 2} × (0,∞).

Hence ∫ ∞
y

∫ ∞
t

F
(i)

(Yi)
(u)dudt is TP2 in (i, y) ∈ {1, 2} × (0,∞),

which in turn gives that∫∞
y

∫∞
t
F

(2)

(Y2)(u)dudt∫∞
y

∫∞
t
F

(1)

(Y1)(u)dudt
is increasing in y > 0.

Hence, (X1)(Y1) 6vrl (X2)(Y2). �

In continuation with Theorem 2.3.4 we have the following result.

Theorem 2.3.6. Assume that Z is independent of X and Y . If X 6rh Y and Z is of

DVRL, then X(Z) >vrl Y(Z).

Proof: Since Z is DVRL so from Theorem 2.3.4 it follows that ψ(y, t) is RR2 in (y, t) ∈

(0,∞)× (0,∞). Again X 6rh Y implies that Fi(x) is TP2 in (i, x) ∈ {1, 2} × (0,∞) and



2.3. Results for RLRT and ITRT based on vrl (vit) Order 61

ψ(y, t) is decreasing in y > 0 for each fixed t > 0. From Lemma 2.3.2, it follows that

Hi(t) as defined in Theorem 2.3.4 is RR2 in (i, t) ∈ {1, 2} × (0,∞), that is,∫∞
t

∫∞
x

(F 2)(Z)(u)dudx∫∞
t

∫∞
x

(F 1)(Z)(u)dudx
is decreasing in t > 0,

which gives the required result. �

The following result is reproduced from Misra et al. (2008).

Proposition 2.3.3. If X 6rh Y and Z has DMRL, then ZY 6mrl ZX .

On using XY = Y(X) in Proposition 2.3.3 it holds in combination with Theorem 2.3.6

that, if X 6rh Y , then

Z is DMRL =⇒ X(Z) >mrl Y(Z)

⇓ ⇓

Z is DVRL =⇒ X(Z) >vrl Y(Z).

To conclude this section, an application of Theorem 2.3.3 is provided which charac-

terizes the DVRL class based on RLRT.

Theorem 2.3.7. Let Z be independent of X. If X is IFR and Z has IVIT, then XZ has

DVRL.

Proof: According to Theorem 1.B.38 of Shaked and Shanthikumar (2007), X is IFR if

and only if Xt 6hr X for all t > 0. By Theorem 2.3.3, (Xt)Z 6vrl XZ for all t > 0. Note

that (XZ)t
st
= (Xt)Z for all t > 0, its holds that (XZ)t 6vrl XZ for all t > 0. Now from

Theorem 2.3.1, it follows immediately that XZ is of DVRL.





Chapter 3

Further Results on Residual Life and

Inactivity Time at Random Time
1

Stochastic comparisons of residual life (inactivity time) of a random variable X at random

time Y (RLRT/ITRT) with respect to likelihood ratio, (reversed) hazard rate, mean

residual life and variance residual life orders have been investigated in the literature. In

this chapter, we provide some more stochastic ordering results for RLRT and ITRT based

on reversed hazard rate, mean inactivity time and variance inactivity time orders. We

also study various properties of ITRT based on DRHR, IMIT and IVIT classes of life

distributions.

3.1 Introduction

Let X be an absolutely continuous nonnegative random variable representing the lifetime

of a unit and let F , F and f be the distribution function, reliability function and density

function of X, respectively. Denote by Xt = (X − t|X > t), the residual life of X at time

t > 0 and X(t) = (t−X|X 6 t), the inactivity time of X at time t > 0. Their respective

1A manuscript containing the work presented here has been published in Communications in Statistics-

Theory & Methods, 2020, 49(5), 1261-1271.
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distribution functions are given by

P (Xt < x) =
F (x+ t)− F (t)

F (t)
and P (X(t) < x) =

F (t)− F (t− x)

F (t)
, x, t > 0.

If t is replaced by a random variable Y , then XY = (X−Y |X > Y ) represents the residual

lifetime of X at random time Y and X(Y ) = (Y −X|X < Y ) denotes the inactivity time of

X at a random time Y . The RLRT is one of the important notions in reliability and queue

theory (see Stoyan, 1983, for more details). For example, the idle period of a classical

GI/G/1 queuing system is expressed as RLRT (see Marshall, 1968 and Kayid et al., 2017).

ITRT is used in medical science to describe the dormant season (or incubation period)

of a disease, i.e., the time between infection and the beginning of a disease. The concept

of RLRT has also been used by Kayid and Izadkhah (2015a) to characterize exponential

distribution.

During the past two decades, stochastic comparisons and ageing properties of RLRT

and ITRT have been studied and discussed extensively in the literature. See, for example,

Yue and Cao (2000), Li and Zuo (2004), Li and Xu (2006), Misra et al. (2008), Cai and

Zheng (2012), Dewan and Khaledi (2014) and Misra and Naqvi (2017, 2018a). They

perform stochastic comparisons of RLRTs and ITRTs based on various stochastic orders

e.g., likelihood ratio, (reversed) hazard rate, mean residual life, variance residual life,

increasing convex and usual stochastic order. In this chapter we mainly focus our attention

to obtain some stochastic comparison results for RLRT and ITRT. These comparisons

have been made with respect to reversed hazard rate, mean inactivity time and variance

inactivity time orders. Distributional behaviours of ITRT have also been clarified by

DRHR, IMIT and IVIT classes of life distributions. For some results on reversed hazard

rate and mean inactivity time orders and their associated classes at a fixed time one

may refer to Block et al. (1998), Chandra and Roy (2001), Nanda et al. (2003), Kayid

and Ahmad (2004), Ahmad and Kayid (2005) and Ahmad et al. (2005), to mention a

few. Needless to say that in mean inactivity time order we compare the means of their

associated inactivity times. However, the means sometimes do not exist and therefore

they are often not very informative. In many instances in applications one has more

detailed information, for the purpose of comparison of two inactivity times that have

non-ordered means, one is usually interested in the comparison of the dispersion of these
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random variables. As a result, stochastic comparison based on variance inactivity time

order have been investigated in the literature. For some characterizations, preservation

properties and applications of the variance inactivity time order one may refer to Mahdy

(2012) and Kayid and Izadkhah (2016).

Let X and Y be two mutually independent nonnegative random variables with a

common support Θ, and Y have distribution function G. Let the distribution functions

of XY and X(Y ) be represented as FY and F(Y ), respectively and defined as

FY (x) =

∫
Θ

[F (y + x)− F (y)]dG(y)∫
Θ
F (y)dG(y)

and

F(Y )(x) =

∫
Θ

[F (y)− F (y − x)]dG(y)∫
Θ
F (y)dG(y)

.

We first recall definitions of some stochastic orders and classes of life distributions that

will be used in this chapter. For details on these topics one may refer to the famous books

by Barlow and Proschan (1981), Müller and Stoyan (2002), Shaked and Shanthikumar

(2007) and Belzunce et al. (2015), among others.

Definition 3.1.1. For two random variables X and Y , X is said to be smaller than Y in

(a) hazard rate order (denoted by X 6hr Y ) if F (x)/G(x) is decreasing in x > 0;

(b) reversed hazard rate order (denoted by X 6rh Y ) if F (x)/G(x) is decreasing in

x > 0;

(c) mean inactivity time order (denoted by X 6mit Y ) if∫ t
0
F (u)du∫ t

0
G(u)du

is decreasing in t > 0;

(d) variance inactivity time order (denoted by X 6vit Y ) if∫ t
0

∫ x
0
F (u)dudx∫ t

0

∫ x
0
G(u)dudx

is decreasing in t > 0.

Definition 3.1.2. A random variable X is said to have

(a) decreasing reversed hazard rate (DRHR) if X(t) is stochastically increasing in t > 0;
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(b) increasing mean inactivity time (IMIT) if∫ t
0
F (u)du

F (t)
is increasing in t > 0;

(c) increasing variance inactivity time (IVIT) if∫ t
0

∫ x
0
F (u)dudx∫ t

0
F (x)dx

is increasing in t > 0.

The purpose of this chapter is to study the stochastic comparisons of RLRTs and

ITRTs based on rh, mit and vit orders and obtain several properties of ITRT based on

their associated classes for life distributions. In Section 3.2, we provide some sufficient

conditions under which two RLRTs are stochastically comparable according to rh, mit

and vit orders. Section 3.3 deals with analogous results for ITRT along with its properties

based on DRHR, IMIT and IVIT classes. Throughout the chapter, the random variables

are assumed to be nonnegative and absolutely continuous.

3.2 Stochastic Comparisons on RLRT

Here we carry out stochastic comparisons of RLRT of the same random variable X having

different random ages Y1 and Y2 based on reversed hazard rate, mean inactivity time and

variance inactivity time orders under the assumption thatX and Y1 (or Y2) are statistically

independent. Before stating our main results, we consider the following lemmas which

will be helpful in deriving the upcoming results and may also be of independent interest

to researchers. First recall from Karlin (1968) that a nonnegative function ψ : X×Y→ R,

the set of real numbers, is said to be TP2 (totally positive of order 2) if ψ(x, y)ψ(x∗, y∗) >

ψ(x, y∗)ψ(x∗, y) for all x, x∗ ∈ X and y, y∗ ∈ Y such that x 6 x∗ and y 6 y∗, where X

and Y are subsets of the real line. ψ is said to be RR2 (reverse regular of order 2) if the

inequality is reversed.

Lemma 3.2.1. (Joag-Dev et al., 1995). Let ψ(x, y) be any TP2 function (not necessarily

a reliability function) in x ∈ X and y ∈ Y and Fi(x) be a distribution function for each i.
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Denote

Hi(y) =

∫
X
ψ(x, y)dFi(x).

If F i(x) is TP2 in i ∈ {1, 2} and x ∈ X and if ψ(x, y) is increasing in x for each y, then

Hi(y) is TP2 in i ∈ {1, 2} and y ∈ Y.

Lemma 3.2.2. (Nanda and Kundu, 2009). Let s(x, y) be an RR2 (TP2) function (not

necessarily a survival function) in x ∈ X and y ∈ Y, and Fi(x) be TP2 in i ∈ {1, 2}

and x ∈ X, where Fi(x) is a distribution function in x for each i. Assume that s(x, y) is

decreasing in x for every y. Then

φi(y) =

∫
X
s(x, y)dFi(x)

is RR2 (TP2) in i ∈ {1, 2} and y ∈ Y. Conversely, if φi(y) is RR2 (TP2) in i ∈ {1, 2}

and y ∈ Y whenever Fi(x) is TP2 in i ∈ {1, 2} and x ∈ X, then s(x, y) is RR2 (TP2) in

x ∈ X and y ∈ Y.

The following theorem provides sufficient conditions for stochastic comparisons be-

tween XY1 and XY2 , the residual lifetime of X at two different random times Y1 and Y2,

with respect to reversed hazard rate order.

Theorem 3.2.1. Let Y1 and Y2 represent the times after which an item with lifetime X

have survived. Further, let X be independent of Y1 and Y2. Suppose that F (y+ x)−F (y)

is increasing (decreasing) in y and Y1 6hr (6rh)Y2. If Xt1 6rh Xt2 for all t1 6 t2, then

XY1 6rh XY2.

Proof: Let Xt1 6rh Xt2 for all t1 6 t2, then

F (t2 + x)− F (t2)

F (t1 + x)− F (t1)
is increasing in x,

which implies that F (y + x) − F (y) is TP2 in x ∈ X and y ∈ Y. Again, Gi(y) is TP2

in i ∈ {1, 2} and y ∈ Y if Y1 6hr Y2. Assume that F (y + x) − F (y) is increasing in y.

Therefore, from Lemma 3.2.1, it follows that∫ ∞
0

[F (y + x)− F (y)]dGi(y) is TP2 in i ∈ {1, 2} and x ∈ X.
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Or equivalently, ∫∞
0

[F (y + x)− F (y)]dG2(y)∫∞
0

[F (y + x)− F (y)]dG1(y)
is increasing in x.

Hence XY1 6rh XY2 . On the other hand, if Y1 6rh Y2 then Gi(y) is TP2 in i ∈ {1, 2} and

y ∈ Y. Suppose F (y + x)− F (y) is decreasing in y. Combining these observations, from

Lemma 3.2.2, we have∫ ∞
0

[F (y + x)− F (y)]dGi(y) is TP2 in i ∈ {1, 2} and x ∈ X.

Or equivalently, ∫∞
0

[F (y + x)− F (y)]dG2(y)∫∞
0

[F (y + x)− F (y)]dG1(y)
is increasing in x.

Hence XY1 6rh XY2 . �

In the following example we provide an application of Theorem 3.2.1.

Example 3.2.1. (i) Let the random variable X have the distribution function

F (x) =

 ex − 1, 0 6 x 6 a

1, x > a

where a = 0.69314719 is the root of the equation ex − 2 = 0. Then, F (y + x) − F (y) =

ey(ex − 1) is increasing in y > 0, for any x ∈ [0, a]. Now,

F (t2 + x)− F (t2)

F (t1 + x)− F (t1)
=
et2

et1
,

so, Xt1 6rh Xt2 for all t1 6 t2. Therefore, from Theorem 3.2.1, XY1 6rh XY2 for any Y1,

Y2 independent of X such that Y1 6hr Y2.

(ii) Let the random variable X have the distribution function

F (x) = 1− 1

(x+ 1)
, x > 0.

Here, F (y + x)− F (y) = x
(y+1)(x+y+1)

is decreasing in y > 0. Since,

F (t2 + x)− F (t2)

F (t1 + x)− F (t1)
=

(t1 + 1)(x+ t1 + 1)

(t2 + 1)(x+ t2 + 1)

=
(t1 + 1)

(t2 + 1)

(
1− t2 − t1

x+ t2 + 1

)
is increasing in x for all t1 6 t2,

so, Xt1 6rh Xt2 for all t1 6 t2. Thus, from Theorem 3.2.1, XY1 6rh XY2 for any Y1 6rh Y2

independent of X.
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It is worthwhile to remark that the reversed inequality between XY1 and XY2 in the

above theorem is also true in view of some sufficient conditions.

Theorem 3.2.2. Let X be independent of Y1 and Y2. Suppose that F (y + x) − F (y) is

decreasing in y and Y1 6rh Y2. If Xt1 >rh Xt2 for all t1 6 t2, then XY1 >rh XY2.

Proof: Let Xt1 >rh Xt2 for all t1 6 t2, then

F (t2 + x)− F (t2)

F (t1 + x)− F (t1)
is decreasing in x,

which implies that F (y+x)−F (y) is RR2 in x ∈ X and y ∈ Y. On the other hand, Gi(y)

is TP2 in i ∈ {1, 2} and y ∈ Y if Y1 6rh Y2. Assume that F (y + x) − F (y) is decreasing

in y. Therefore, from Lemma 3.2.2, it follows that∫ ∞
0

[F (y + x)− F (y)]dGi(y) is RR2 in i ∈ {1, 2} and x ∈ X.

Thus, ∫∞
0

[F (y + x)− F (y)]dG2(y)∫∞
0

[F (y + x)− F (y)]dG1(y)
is decreasing in x.

Hence XY1 >rh XY2 . �

Consider the following example in support of the above result.

Example 3.2.2. Let X be a random variable having distribution function

F (x) =

 sinx, 0 6 x 6 π/2

1, x > π/2.

Then it can be seen that F (y + x)− F (y) = sin(y + x)− sin y = 2 sin(x/2) cos(x/2 + y),

which is decreasing in y > 0. Now,

d

dx

[
F (t2 + x)− F (t2)

F (t1 + x)− F (t1)

]
=

d

dx

[
cos(t2 + x/2)

cos(t1 + x/2)

]
=
−1

2
cos(t1 + x/2) sin(t2 + x/2)− 1

2
cos(t2 + x/2) sin(t1 + x/2)

[cos(t1 + x/2)]2

= −
1
2

sin(x+ t1 + t2)

[cos(t1 + x/2)]2

6 0.
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Hence,
F (t2 + x)− F (t2)

F (t1 + x)− F (t1)
is decreasing in x.

Or equivalently, Xt1 >rh Xt2 for all t1 6 t2. Therefore, from Theorem 3.2.2, XY1 >rh XY2

for any Y1, Y2 independent of X so that Y1 6rh Y2.

Next, we provide sufficient conditions for stochastic comparison of RLRT with respect

to MIT order.

Theorem 3.2.3. Let X be independent of Y1 and Y2. Assume that
∫ x

0
[F (y+u)−F (y)]du

is increasing (decreasing) in y and Y1 6hr (6rh)Y2. If Xt1 6mit Xt2 for all t1 6 t2, then

XY1 6mit XY2.

Proof: Let Xt1 6mit Xt2 for all t1 6 t2, then∫ x
0

[F (t2 + u)− F (t2)]du∫ x
0

[F (t1 + u)− F (t1)]du
is increasing in x,

which in turn gives that∫ x

0

[F (y + u)− F (y)]du is TP2 in x ∈ X and y ∈ Y. (3.2.1)

Assume that Y1 6hr Y2. Then

Gi(y) is TP2 in i ∈ {1, 2} and y ∈ Y. (3.2.2)

Further, assume that∫ x

0

[F (y + u)− F (y)]du is increasing in y. (3.2.3)

Therefore, in view of (3.2.1), (3.2.2) and (3.2.3), we have from Lemma 3.2.1 that∫ ∞
0

∫ x

0

[F (y + u)− F (y)]dudGi(y) is TP2 in i ∈ {1, 2} and x ∈ X.

Or equivalently, ∫∞
0

∫ x
0

[F (y + u)− F (y)]dudG2(y)∫∞
0

∫ x
0

[F (y + u)− F (y)]dudG1(y)
is increasing in x.

Hence XY1 6mit XY2 . On the other hand,

Gi(y) is TP2 in i ∈ {1, 2} and y ∈ Y (3.2.4)
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in accordance with Y1 6rh Y2. Also, let∫ x

0

[F (y + u)− F (y)]du be decreasing in y. (3.2.5)

Therefore, on using (3.2.1), (3.2.4) and (3.2.5), we have from Lemma 3.2.2 that∫ ∞
0

∫ x

0

[F (y + u)− F (y)]dudGi(y) is TP2 in i ∈ {1, 2} and x ∈ X,

which implies that∫∞
0

∫ x
0

[F (y + u)− F (y)]dudG2(y)∫∞
0

∫ x
0

[F (y + u)− F (y)]dudG1(y)
is increasing in x.

Hence XY1 6mit XY2 . �

The following example illustrates the above theorem.

Example 3.2.3. Let the random variable X follow the distribution

F (x) = 1− 1

(x+ 1)2
, x > 0.

Then, ∫ x

0

[F (y + u)− F (y)]du =
x2

(y + 1)2(x+ y + 1)
is decreasing in y > 0.

Now,∫ x
0

[F (t2 + u)− F (t2)]du∫ x
0

[F (t1 + u)− F (t1)]du
=

(t1 + 1)2(x+ t1 + 1)

(t2 + 1)2(x+ t2 + 1)

=
(t1 + 1)2

(t2 + 1)2

(
1− t2 − t1

x+ t2 + 1

)
is increasing in x for all t1 6 t2,

which in turn gives that Xt1 6mit Xt2 for all t1 6 t2. Therefore, from Theorem 3.2.3,

XY1 6mit XY2 for any Y1, Y2 independent of X so that Y1 6rh Y2.

In the following we discuss about vit order for RLRT.

Theorem 3.2.4. For three random variables X, Y1 and Y2 where X is independent of

Y1 and Y2, suppose that
∫ x

0

∫ v
0

[F (y + u) − F (y)]dudv is increasing (decreasing) in y and

Y1 6hr (6rh)Y2. If Xt1 6vit Xt2 for all t1 6 t2, then XY1 6vit XY2.
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Proof: Let Xt1 6vit Xt2 for all t1 6 t2 then∫ x
0

∫ v
0

[F (t2 + u)− F (t2)]dudv∫ x
0

∫ v
0

[F (t1 + u)− F (t1)]dudv
is increasing in x,

which implies that∫ x

0

∫ v

0

[F (y + u)− F (y)]dudv is TP2 in x ∈ X and y ∈ Y.

Also,

Gi(y) is TP2 in i ∈ {1, 2} and y ∈ Y if Y1 6hr Y2.

Again, since
∫ x

0

∫ v
0

[F (y + u)− F (y)]du is increasing in y, so from Lemma 3.2.1 it follows

that ∫ ∞
0

∫ x

0

∫ v

0

[F (y + u)− F (y)]dudvdGi(y) is TP2 in i ∈ {1, 2} and x ∈ X.

Thus, ∫∞
0

∫ x
0

∫ v
0

[F (y + u)− F (y)]dudvdG2(y)∫∞
0

∫ x
0

∫ v
0

[F (t+ u)− F (t)]dudvdG1(y)
is increasing in x.

Hence XY1 6vit XY2 . Again, if Y1 6rh Y2 then Gi(y) is TP2 in i ∈ {1, 2} and y ∈ Y.

Assume that ∫ x

0

∫ v

0

[F (y + u)− F (y)]du is decreasing in y,

Therefore, from Lemma 3.2.2 it follows that∫ ∞
0

∫ x

0

∫ v

0

[F (y + u)− F (y)]dudvdGi(y) is TP2 in i ∈ {1, 2} and x ∈ X.

Or equivalently,∫∞
0

∫ x
0

∫ v
0

[F (y + u)− F (y)]dudvdG2(y)∫∞
0

∫ x
0

∫ v
0

[F (t+ u)− F (t)]dudvdG1(y)
is increasing in x.

Hence XY1 6vit XY2 . �

To conclude, we give some insight into the sufficient conditions that would be required

if the inequalities in Theorems 3.2.3 and 3.2.4 are reversed.

Theorem 3.2.5. Let X be independent of Y1 and Y2 such that Y1 6rh Y2.
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(a) If
∫ x

0
[F (y + u) − F (y)]du is decreasing in y and Xt1 >mit Xt2 for all t1 6 t2, then

XY1 >mit XY2.

(b) If
∫ x

0

∫ v
0

[F (y + u) − F (y)]dudv is decreasing in y and Xt1 >vit Xt2 for all t1 6 t2,

then XY1 >vit XY2.

Proof: (a) Let Xt1 >mit Xt2 for all t1 6 t2, then∫ x
0

[F (t2 + u)− F (t2)]du∫ x
0

[F (t1 + u)− F (t1)]du
is decreasing in x,

which in turn gives that∫ x

0

[F (y + u)− F (y)]du is RR2 in x ∈ X and y ∈ Y. (3.2.6)

Again,

Gi(y) is TP2 in i ∈ {1, 2} and y ∈ Y (3.2.7)

in accordance with Y1 6rh Y2. Also,∫ x

0

[F (y + u)− F (y)]du is decreasing in y. (3.2.8)

Therefore, in view of (3.2.6), (3.2.7) and (3.2.8), we have from Lemma 3.2.2 that∫ ∞
0

∫ x

0

[F (y + u)− F (y)]dudGi(y) is RR2 in i ∈ {1, 2} and x ∈ X.

Or equivalently, ∫∞
0

∫ x
0

[F (y + u)− F (y)]dudG2(y)∫∞
0

∫ x
0

[F (y + u)− F (y)]dudG1(y)
is decreasing in x.

Hence XY1 >mit XY2 .

(b) Let Xt1 >vit Xt2 for all t1 6 t2 then∫ x
0

∫ v
0

[F (t2 + u)− F (t2)]dudv∫ x
0

∫ v
0

[F (t1 + u)− F (t1)]dudv
is decreasing in x,

which implies that∫ x

0

∫ v

0

[F (y + u)− F (y)]dudv is RR2 in x ∈ X and y ∈ Y.
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Also, Gi(y) is TP2 in i ∈ {1, 2} and y ∈ Y if Y1 6rh Y2. Again, since
∫ x

0

∫ v
0

[F (y + u) −

F (y)]du is decreasing in y, so from Lemma 3.2.2 it follows that∫ ∞
0

∫ x

0

∫ v

0

[F (y + u)− F (y)]dudvdGi(y) is RR2 in i ∈ {1, 2} and x ∈ X.

Thus, ∫∞
0

∫ x
0

∫ v
0

[F (y + u)− F (y)]dudvdG2(y)∫∞
0

∫ x
0

∫ v
0

[F (t+ u)− F (t)]dudvdG1(y)
is decreasing in x.

Hence XY1 >vit XY2 .

3.3 Results on ITRT

In this section, we perform stochastic comparisons between X(Y1) and X(Y2), the inactivity

time of X at the different random times Y1 and Y2. We provide some sufficient conditions

under which X(Y1) is comparable with X(Y2) according to the reversed hazard rate order,

the mean inactivity time order and the variance inactivity time order. We also study

some properties of ITRT based on DRHR, IMIT and IVIT classes.

The following result presents sufficient conditions for comparing X(Y1) and X(Y2) with

respect to rh order.

Theorem 3.3.1. Let Y1 and Y2 be the times of observation of the failure of a system with

lifetime X. Further, let Y1 and Y2 be independent of X. Suppose that

• F (y)− F (y − x) is increasing (decreasing) in y;

• Y1 6hr (6rh)Y2.

If X(t1) 6rh X(t2) for all t1 6 t2, then X(Y1) 6rh X(Y2).

Proof: Since X(t1) 6rh X(t2) for all t1 6 t2, then

F(t2)(x)

F(t1)(x)
is increasing in x,

which yields
F (t2)− F (t2 − x)

F (t1)− F (t1 − x)
is increasing in x.



3.3. Results on ITRT 75

Therefore, F (y)− F (y − x) is TP2 in x ∈ X and y ∈ Y. Now, Gi(y) is TP2 in i ∈ {1, 2}

and y ∈ Y as Y1 6hr Y2. Again, F (y) − F (y − x) is increasing in y. Combining these

observations, from Lemma 3.2.1, we have∫ ∞
0

[F (y)− F (y − x)]dGi(y) is TP2 in i ∈ {1, 2} and x ∈ X.

Or equivalently, ∫∞
0

[F (y)− F (y − x)]dG2(y)∫∞
0

[F (y)− F (y − x)]dG1(y)
is increasing in x.

Hence X(Y1) 6rh X(Y2). Again, Gi(y) is TP2 in i ∈ {1, 2} and y ∈ Y if Y1 6rh Y2. Suppose

that F (y)− F (y − x) is decreasing in y, so from Lemma 3.2.2, we get∫ ∞
0

[F (y)− F (y − x)]dGi(y) is TP2 in i ∈ {1, 2} and x ∈ X.

Thus, ∫∞
0

[F (y)− F (y − x)]dG2(y)∫∞
0

[F (y)− F (y − x)]dG1(y)
is increasing in x.

Hence X(Y1) 6rh X(Y2). �

The following example gives an application of Theorem 3.3.1.

Example 3.3.1. (i) Let the random variable X have the distribution function

F (x) =

 x2, 0 6 x 6 1

1, x > 1.

Then F (y)− F (y − x) = x(2y − x) is increasing in y > x and for any x ∈ [0, 1]. Also,

F (t2)− F (t2 − x)

F (t1)− F (t1 − x)
=

2t2 − x
2t1 − x

is increasing in x ∈ [0, 1],

which gives that X(t1) 6rh X(t2) for all t1 6 t2. Therefore, from Theorem 3.3.1, we obtain

X(Y1) 6rh X(Y2) for any two random variables Y1, Y2 independent of X so that Y1 6hr Y2.

(ii) Let the random variable X follow exponential distribution

F (x) = 1− e−x, x > 0.

It can easily be seen that F (y)− F (y − x) = e−y(ex − 1) is decreasing in y > x and

F (t2)− F (t2 − x)

F (t1)− F (t1 − x)
=
e−t2

e−t1
,
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so X(t1) 6rh X(t2) for all t1 6 t2. Therefore, from Theorem 3.3.1, we get X(Y1) 6rh X(Y2)

for any Y1 6rh Y2, independent of X.

Next, we provide a result concerning comparison of ITRT with respect to mit order.

Theorem 3.3.2. Let X be independent of Y1 and Y2. Assume that Y1 6hr (6rh)Y2 and∫ x
0

[F (y)− F (y − u)]du is increasing (decreasing) in y. If X(t1) 6mit X(t2) for all t1 6 t2,

then X(Y1) 6mit X(Y2).

Proof: Since X(t1) 6mit X(t2) for all t1 6 t2, so∫ x
0
F(t2)(u)du∫ x

0
F(t1)(u)du

is increasing in x.

Or equivalently, ∫ x
0

[F (t2)− F (t2 − u)]du∫ x
0

[F (t1)− F (t1 − u)]du
is increasing in x.

Therefore, ∫ x

0

[F (y)− F (y − u)]du is TP2 in x ∈ X and y ∈ Y. (3.3.1)

On the other hand,

Gi(y) is TP2 in i ∈ {1, 2} and y ∈ Y (3.3.2)

in accordance with Y1 6hr Y2. Assume that∫ x

0

[F (y)− F (y − u)]du is increasing in y. (3.3.3)

Therefore, on using (3.3.1), (3.3.2) and (3.3.3), we obtain from Lemma 3.2.1∫ ∞
0

∫ x

0

[F (y)− F (y − u)]dudGi(y) is TP2 in i ∈ {1, 2} and x ∈ X.

Or equivalently, ∫∞
0

∫ x
0

[F (y)− F (y − u)]dudG2(y)∫∞
0

∫ x
0

[F (y)− F (y − u)]dudG1(y)
is increasing in x.

Hence X(Y1) 6mit X(Y2). If Y1 6rh Y2 then Gi(y) is TP2 in i ∈ {1, 2} and y ∈ Y. Also, let∫ x

0

[F (y)− F (y − u)]du be decreasing in y.
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Then, from Lemma 3.2.2, we have∫ ∞
0

∫ x

0

[F (y)− F (y − u)]dudGi(y) is TP2 in i ∈ {1, 2} and x ∈ X.

Or equivalently, ∫∞
0

∫ x
0

[F (y)− F (y − u)]dudG2(y)∫∞
0

∫ x
0

[F (y)− F (y − u)]dudG1(y)
is increasing in x.

Hence X(Y1) 6mit X(Y2). �

Now, we compare two inactivity time random variables with respect to vit order.

Theorem 3.3.3. For three independent random variables X, Y1 and Y2, suppose that∫ x
0

∫ v
0

[F (y)−F (y−u)]dudv is increasing (decreasing) in y and Y1 6hr (6rh)Y2. If X(t1) 6vit

X(t2) for all t1 6 t2, then X(Y1) 6vit X(Y2).

Proof: On using the fact that X(t1) 6vit X(t2) we have∫ x
0

∫ v
0
F(t2)(u)dudv∫ x

0

∫ v
0
F(t1)(u)dudv

is increasing in x,

which gives that ∫ x
0

∫ v
0

[F (t2)− F (t2 − u)]dudv∫ x
0

∫ u
0

[F (t1)− F (t1 − u)]dudv
is increasing in x.

Therefore, ∫ x

0

∫ v

0

[F (y)− F (y − u)]dudv is TP2 in x ∈ X and y ∈ Y.

Now, Y1 6hr Y2 implies that Gi(y) is TP2 in i ∈ {1, 2} and y ∈ Y. Again,∫ x

0

∫ v

0

[F (y)− F (y − u)]dudv is increasing in y.

Therefore, from Lemma 3.2.1, we have∫ ∞
0

∫ x

0

∫ v

0

[F (y)− F (y − u)]dudvdGi(y) is TP2 in i ∈ {1, 2} and x ∈ X.

This implies that∫∞
0

∫ x
0

∫ v
0

[F (y)− F (y − u)]dudvdG2(y)∫∞
0

∫ x
0

∫ v
0

[F (y)− F (y − u)]dudvdG1(y)
is increasing in x.
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Hence X(Y1) 6vit X(Y2). Similarly, Gi(y) is TP2 in i ∈ {1, 2} and y ∈ Y if Y1 6rh Y2.

Suppose that ∫ x

0

∫ v

0

[F (y)− F (y − u)]dudv is decreasing in y.

Therefore, it follows from Lemma 3.2.2 that∫ ∞
0

∫ x

0

∫ v

0

[F (y)− F (y − u)]dudvdGi(y) is TP2 in i ∈ {1, 2} and x ∈ X.

This implies that∫∞
0

∫ x
0

∫ v
0

[F (y)− F (y − u)]dudvdG2(y)∫∞
0

∫ x
0

∫ v
0

[F (y)− F (y − u)]dudvdG1(y)
is increasing in x.

Hence X(Y1) 6vit X(Y2). �

It is to be mentioned here that the converse of Theorems 3.3.1-3.3.3 are also true.

Theorem 3.3.4. Let X be independent of Y1 and Y2. Assume that Y1 6rh Y2.

(a) If F (y) − F (y − x) is decreasing in y and X(t1) >rh X(t2) for all t1 6 t2, then

X(Y1) >rh X(Y2).

(b) If
∫ x

0
[F (y)−F (y−u)]du is decreasing in y and X(t1) >mit X(t2) for all t1 6 t2, then

X(Y1) >mit X(Y2).

(c) If
∫ x

0

∫ v
0

[F (y)−F (y− u)]dudv is decreasing in y and X(t1) >vit X(t2) for all t1 6 t2,

then X(Y1) >vit X(Y2).

Proof: Let Y1 6rh Y2, then

Gi(y) is TP2 in i ∈ {1, 2} and y ∈ Y. (3.3.4)

(a) If X(t1) >rh X(t2) for all t1 6 t2, then

F(t2)(x)

F(t1)(x)
is decreasing in x,

which yields
F (t2)− F (t2 − x)

F (t1)− F (t1 − x)
is decreasing in x.
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Therefore,

F (y)− F (y − x) is RR2 in x ∈ X and y ∈ Y. (3.3.5)

Again, let

F (y)− F (y − x) be decreasing in y. (3.3.6)

Therefore, on using (3.3.4), (3.3.5) and (3.3.6), we have from Lemma 3.2.2,∫ ∞
0

[F (y)− F (y − x)]dGi(y) is RR2 in i ∈ {1, 2} and x ∈ X.

Or equivalently, ∫∞
0

[F (y)− F (y − x)]dG2(y)∫∞
0

[F (y)− F (y − x)]dG1(y)
is decreasing in x.

Hence X(Y1) >rh X(Y2).

(b) Suppose X(t1) >mit X(t2) for all t1 6 t2, so that∫ x
0
F(t2)(u)du∫ x

0
F(t1)(u)du

is decreasing in x.

Or equivalently, ∫ x
0

[F (t2)− F (t2 − u)]du∫ x
0

[F (t1)− F (t1 − u)]du
is decreasing in x.

Therefore, ∫ x

0

[F (y)− F (y − u)]du is RR2 in x ∈ X and y ∈ Y.

Again, assume that ∫ x

0

[F (y)− F (y − u)]du is decreasing in y.

Combining these observations with (3.3.4), we obtain from Lemma 3.2.2∫ ∞
0

∫ x

0

[F (y)− F (y − u)]dudGi(y) is RR2 in i ∈ {1, 2} and x ∈ X.

Or equivalently, ∫∞
0

∫ x
0

[F (y)− F (y − u)]dudG2(y)∫∞
0

∫ x
0

[F (y)− F (y − u)]dudG1(y)
is decreasing in x.
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Hence X(Y1) >mit X(Y2).

(c) Let X(t1) >vit X(t2). Then we have∫ x
0

∫ v
0
F(t2)(u)dudv∫ x

0

∫ v
0
F(t1)(u)dudv

is decreasing in x,

which gives that ∫ x
0

∫ v
0

[F (t2)− F (t2 − u)]dudv∫ x
0

∫ u
0

[F (t1)− F (t1 − u)]dudv
is decreasing in x.

Therefore, ∫ x

0

∫ v

0

[F (y)− F (y − u)]dudv is RR2 in x ∈ X and y ∈ Y.

Again, suppose that∫ x

0

∫ v

0

[F (y)− F (y − u)]dudv is decreasing in y.

Therefore, on using these facts with (3.3.4) we have∫ ∞
0

∫ x

0

∫ v

0

[F (y)− F (y − u)]dudvdGi(y) is RR2 in i ∈ {1, 2} and x ∈ X.

This implies that∫∞
0

∫ x
0

∫ v
0

[F (y)− F (y − u)]dudvdG2(y)∫∞
0

∫ x
0

∫ v
0

[F (y)− F (y − u)]dudvdG1(y)
is decreasing in x.

Hence X(Y1) >vit X(Y2). �

Now, we study DRHR, IMIT and IVIT classes of life distributions for ITRT. It is

worth mentioning that the DRHR, IMIT and IVIT properties are used to characterize

the behaviour of a random variable X representing the lifetime of a system that was found

to fail at a fixed time t > 0. The stochastic monotonicity of X(t) in relation to ageing

properties of X has been the subject of interest by many researchers. Here we consider

the situation where the observed failure time and exact time of failure of the system both

are random. We provide conditions on X and Y to obtain the distributional behaviors of

ITRT X(Y ) that are clarified by these nonparametric classes of life distributions. In the

following two theorems we discuss DRHR property of X(Y ).
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Theorem 3.3.5. Let X(t1) 6rh X(t2) for all t1 6 t2. Further, let F (y) − F (y − x) be

increasing in y. If Y is IFR then X(Y ) is DRHR.

Proof: According to Theorem 1.B.38 of Shaked and Shanthikumar (2007), Y is IFR if

and only if Yt 6hr Y for all t > 0. Then, from Theorem 3.3.1, we have X(Yt) 6rh X(Y ).

Note that (Yt)X
st
= (YX)t for all t > 0, or equivalently, X(Yt)

st
=
(
X(Y )

)
t

for all t > 0.

Therefore,
(
X(Y )

)
t
6rh X(Y ) for all t > 0. Hence X(Y ) is DRHR.

Theorem 3.3.6. Assume that X(t1) 6rh X(t2) for all t1 6 t2 and F (y) − F (y − x) is

decreasing in y. If Yt 6rh Y for all t > 0, then X(Y ) is DRHR.

Proof: Assume that X(t1) 6rh X(t2) for all t1 6 t2 and F (y) − F (y − x) is decreasing in

y. If Yt 6rh Y then, from Theorem 3.3.1, we have X(Yt) 6rh X(Y ). Hence X(Y ) is DRHR.�

Now we discuss the properties of ITRT based on IMIT class.

Theorem 3.3.7. Suppose that X(t1) 6mit X(t2) for all t1 6 t2. If
∫ x

0
[F (y)− F (y − u)]du

is increasing in y and Y is IFR then X(Y ) is IMIT.

Proof: Y is IFR if and only if Yt 6hr Y for all t > 0. Since X(t1) 6mit X(t2) for all

t1 6 t2 and
∫ x

0
[F (y) − F (y − u)]du is increasing in y, so from Theorem 3.3.2, we get

X(Yt) 6mit X(Y ) for all t > 0. In view of X(Yt)
st
=
(
X(Y )

)
t
, we obtain

(
X(Y )

)
t
6mit X(Y ) for

all t > 0. According to Proposition 2.4 of Li and Xu (2006), if Xt 6mit X for any t > 0,

then X is IMIT. Hence X(Y ) is IMIT.

Theorem 3.3.8. Let X(t1) 6mit X(t2) for all t1 6 t2. If
∫ x

0
[F (y)−F (y−u)]du is decreasing

in y and Yt 6rh Y for all t > 0, then X(Y ) is IMIT.

Proof: Let X(t1) 6mit X(t2) for all t1 6 t2. If
∫ x

0
[F (y) − F (y − u)]du is decreasing in y

and Yt 6rh Y for all t > 0, then from Theorem 3.3.2, we get X(Yt) 6mit X(Y ) for all t > 0.

Hence X(Y ) is IMIT. �

Here we characterize the IVIT class based on ITRT.
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Theorem 3.3.9. Suppose that X(t1) 6vit X(t2) for all t1 6 t2 and
∫ x

0

∫ v
0

[F (y) − F (y −

u)]dudv is increasing in y. If Y is IFR then X(Y ) is IVIT.

Proof: Let X(t1) 6vit X(t2) for all t1 6 t2 and
∫ x

0

∫ v
0

[F (y)− F (y − u)]dudv be increasing

in y. Also, Yt 6hr Y for all t > 0, if Y is IFR. So from Theorem 3.3.3 we obtain

X(Yt) 6vit X(Y ), or equivalently,
(
X(Y )

)
t
6vit X(Y ) for all t > 0. According to Theorem

2.3.1 of Chapter 2, if Xt 6vit X for any t > 0, then X is IVIT. Hence X(Y ) is IVIT.

Theorem 3.3.10. Assume that X(t1) 6vit X(t2) for all t1 6 t2 and
∫ x

0

∫ v
0

[F (y) − F (y −

u)]dudv is decreasing in y. If Yt 6rh Y for all t > 0, then X(Y ) is IVIT.

Proof: Assume that X(t1) 6vit X(t2) for all t1 6 t2 and
∫ x

0

∫ v
0

[F (y) − F (y − u)]dudv is

decreasing in y. If Yt 6rh Y for all t > 0, then from Theorem 3.3.3 we obtain
(
X(Y )

)
t
6vit

X(Y ) for all t > 0. Hence X(Y ) is IVIT.



Chapter 4

Stochastic Properties of RLRT

(ITRT) based on VRL
1

Stochastic comparisons and ageing properties of residual life (inactivity time) of a random

variable X at random time Y (RLRT/ITRT) taking X and Y independent have been

investigated in the literature. In this chapter, we consider X and Y not necessarily

independent and obtain stochastic comparison results for RLRT and ITRT based on

variance residual life (vrl) order. We also study various ageing properties of RLRT/ITRT

based on the associated classes of life distributions of VRL. Some applications of the

results derived in this chapter are also illustrated.

4.1 Introduction

Let X and Y be jointly distributed random variables (not necessarily independent). The

residual life and the inactivity time of X at a fixed time t > 0 are defined as the random

variables Xt = (X − t|X > t) and X(t) = (t−X|X 6 t). In the same vein, if t is replaced

by the random variable Y , then the residual life of X at a random time Y (RLRT) is

defined by XY = (X−Y |X > Y ) and the inactivity time of X at a random time Y (ITRT)

1One article, containing the work discussed here has appeared in Communications in Statistics- Theory

& Methods, 2020, DOI: 10.1080/03610926.2020.1812655 (Online First).
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is defined by X(Y ) = (Y − X|X 6 Y ). In industrial engineering, the RLRT represents

the original working time of the standby unit if X is regarded as the total random life of

a warm standby unit with its age Y , and the idle time of a server in a classical GI/G/1

queuing system can also be expressed as a RLRT (see Marshall, 1968). ITRT is used in

medical science to describe the dormant season (or incubation period) of a disease, i.e.,

the time between infection and the beginning of a disease. In reliability theory, let X

and Y represent the lifetimes of two components C1 and C2, respectively. If C1 stops

working before C2, then X(Y ) denotes the duration for which C2 will continue to work

after the failure of C1. Note that the stochastic comparisons of X(Y ) and XY enlighten us

on robustness of components C1 and C2 working under the same environment.

Stochastic comparisons and ageing properties of XY and X(Y ) under the assumption

that X and Y are independent, have been studied and discussed extensively by Yue and

Cao (2000), Li and Zuo (2004), Li and Xu (2006), Misra et al. (2008), Cai and Zheng

(2012), Dewan and Khaledi (2014) and Li and Fang (2018). Most of the comparisons have

been made with respect to usual stochastic, hazard rate, reversed hazard rate, likelihood

ratio, mean residual life, mean inactivity time and increasing convex orders. But, another

context where the stochastic orders arise is in the comparison of random variables in

terms of their variability or dispersion. The basic way to decide if one random variable

has greater variability than another one, is comparing their variances. For example, in risk

theory, the comparison is made in terms of the variances in order to avoid situation of high

uncertainty or variability. Therefore, it may be of interest to study the dispersion of RLRT

and ITRT. Although, in Chapter 2 and Chapter 3 we perform stochastic comparisons of

RLRTs and ITRTs based on vrl and vit orders, in general, the results are not sufficient

for stochastic comparisons of RLRT/ITRT based on variability measures. Moreover, due

to technical complexity, all the studies carried out so far have assumed that X and Y

are independently distributed. But, in most of the practical situations the assumption of

independence is seldom valid and it is necessary to take into account their dependence

structure. This shows the relevance and usefulness of studying RLRT/ITRT based on vrl

order in the presence of dependence structure between X and Y .

It is to be noted that the VRL and VIT functions are useful in many areas of statistics
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including biometry, actuarial science, reliability theory and a lot of interest has been

evoked on the study of vrl/vit order and their associated classes at a fixed time. See,

for example, Launer (1984), Gupta (1987), Gupta et al. (1987), Kanjo (1996), Nanda et

al. (2003), Abu-Youssef (2004), Gupta (2006), Kundu and Nanda (2010), Mahdy (2012)

and Kayid and Izadkhah (2016), to mention a few. To this end, we put the conditional

random variables RLRT and ITRT in the framework of the VRL and the VIT quantities.

To get a flavor on the interpretation of residual life (inactivity time) of RLRT (ITRT),

consider the following example. In clinical trials, it often happens that the time at which

a person goes to clinic for examination of a disease is different from (actually higher than)

the time he got infected. Let X, Y represent the time of infection and onset of a disease

and t denote the time when the disease was clinically diagnosed. Then
(
X(Y )

)
(t)

, the

inactivity time of ITRT signifies the time elapsed since beginning of the disease and its

clinically observed time. On the contrary, if X is taken as the time of recovery or death

then XY identifies with the period of illness i.e., the time between beginning of a disease

and its recovery. Again, suppose that the person undergoes a lab test and identified with

the disease after time t of the inception of the disease i.e., at time (Y + t). Under the

assumption that the treatment of the disease commenced immediately after diagnosis,

(XY )t describes the time it will take to cure the disease or remaining treatment time.

Thus, from a stochastic comparison vantage point, the variability of RLRT/ITRT also

needs to be taken into account along with their means.

Recently, Misra and Naqvi (2017, 2018a) have investigated some stochastic order

related results and ageing properties of RLRT and ITRT with respect to likelihood ratio,

hazard rate and mean residual life orders assuming a dependence between X and Y . Even

though some works can be found on stochastic comparisons of RLRT/ITRT with respect

to various stochastic orders, no works based on vrl/vit order, to the best of our knowledge,

till now, seem to have been done under dependence condition. Motivated by this, in this

chapter, we provide some further results on stochastic comparisons and ageing properties

of RLRT/ITRT based on vrl order and the associated classes of life distributions, taking

X and Y not necessarily independent. We extend the related results of Chapter 2 derived

under independence of X and Y to include situations where X and Y may be dependent
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random variables.

Let (X,Z1) and (Y, Z2) be two sets of jointly distributed lifetime random variables

(not necessarily independent) with common support [0,∞) × [0,∞). Let F , G and Hi

be the cumulative distribution functions (cdfs), F , G and H i be the survival functions

(sfs) and f , g and hi be the probability density functions (pdfs) of X, Y and Zi, i = 1, 2,

respectively. Let Xθ (Y θ) denote the random variable having the same distribution as the

conditional distribution of X (Y ) given that Z1 = θ (Z2 = θ). Let fθ, Fθ and F θ (gθ, Gθ

and Gθ), respectively, be the pdf, the cdf and the sf of Xθ (Y θ), θ > 0. The sfs of XZ1

and X(Z1), respectively, are given by the following

FZ1(x) =

∫∞
0
F θ(x+ θ)dH1(θ)∫∞

0
F θ(θ)dH1(θ)

and

F (Z1)(x) =

∫∞
0
Fθ(θ − x)dH1(θ)∫∞

0
Fθ(θ)dH1(θ)

.

The organization of this chapter is as follows: In Section 4.2, we include all the defini-

tions and lemmas which will be used in proving the main results of this chapter. In Section

4.3, we provide some further results on stochastic comparisons of RLRTs and ITRTs based

on vrl order, taking X and Y not necessarily independent. Section 4.4 presents results

on preservation of ageing properties of RLRT/ITRT based on IVRL (DVRL) and IVIT

classes. Finally, in Section 4.5, we provide several situations where the results of Section

4.3 can be applied.

4.2 Preliminaries

In this section, we provide some definitions and lemmas which will be intensively used

in deriving the theorems discussed later and may also be of independent interest to re-

searchers. We first recall definitions of some stochastic orders and classes of life distribu-

tions that will be used in the present chapter. For details on these topics one may refer

to the famous books by Barlow and Proschan (1981), Müller and Stoyan (2002), Shaked

and Shanthikumar (2007) and Belzunce et al. (2015), among others.
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Definition 4.2.1. For two random variables X and Y , X is said to be smaller than Y in

(a) hazard rate order (denoted by X 6hr Y ) if F (x)/G(x) is decreasing in x > 0;

(b) reversed hazard rate order (denoted by X 6rh Y ) if F (x)/G(x) is decreasing in

x > 0;

(c) likelihood ratio order (denoted by X 6lr Y ) if f(x)/g(x) is decreasing in x > 0;

(d) mean residual life order (denoted by X 6mrl Y ) if∫∞
t
F (x)dx∫∞

t
G(x)dx

is decreasing in t > 0;

(e) mean inactivity time order (denoted by X 6mit Y ) if∫ t
0
F (x)dx∫ t

0
G(x)dx

is decreasing in t > 0;

(f) variance residual life order (denoted by X 6vrl Y ) if∫∞
t

∫∞
x
F (u)dudx∫∞

t

∫∞
x
G(u)dudx

is decreasing in t > 0;

(g) variance inactivity time order (denoted by X 6vit Y ) if∫ t
0

∫ x
0
F (u)dudx∫ t

0

∫ x
0
G(u)dudx

is decreasing in t > 0.

Definition 4.2.2. A random variable X is said to have

(a) increasing (resp. decreasing) likelihood ratio (ILR (resp. DLR)) if for any a > 0,

f(t+ a)/f(t) is decreasing (resp. increasing) in t > 0;

(b) increasing (resp. decreasing) failure rate (IFR (resp. DFR)) if Xt is stochastically

decreasing (resp. increasing) in t > 0;

(c) decreasing reverse hazard rate (DRHR) if X(t) is stochastically increasing in t > 0;

(d) increasing (resp. decreasing) mean residual life (IMRL (resp. DMRL)) if∫∞
t
F (x)dx

F (t)
is increasing (resp. decreasing) in t > 0;
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(e) increasing mean inactivity time (IMIT) if∫ t
0
F (u)du

F (t)
is increasing in t > 0;

(f) increasing (resp. decreasing) variance residual life (IVRL (resp. DVRL)) if∫∞
t

∫∞
x
F (u)dudx∫∞

t
F (x)dx

is increasing (resp. decreasing) in t > 0;

(g) increasing variance inactivity time (IVIT) if∫ t
0

∫ x
0
F (u)dudx∫ t

0
F (x)dx

is increasing in t > 0.

Now we consider the following lemmas which will be helpful in proving the upcoming

results of this chapter. First, recall from Karlin (1968) that a nonnegative function ψ :

X × Y → R, the set of real numbers, is said to be TP2 (totally positive of order 2) if

ψ(x, y)ψ(x∗, y∗) > ψ(x, y∗)ψ(x∗, y) for all x, x∗ ∈ X and y, y∗ ∈ Y such that x 6 x∗ and

y 6 y∗, where X and Y are subsets of the real line. ψ is said to be RR2 (reverse regular

of order 2) if the inequality is reversed.

Lemma 4.2.1. (Joag-Dev et al., 1995). Let ψ(x, y) be any TP2 function (not necessarily

a reliability function) in x ∈ X and y ∈ Y and Fi(x) be a distribution function for each i.

Denote

Hi(y) =

∫
X
ψ(x, y)dFi(x).

If F i(x) is TP2 in i ∈ {1, 2} and x ∈ X and if ψ(x, y) is increasing in x for each y, then

Hi(y) is TP2 in y ∈ Y and i ∈ {1, 2}.

Lemma 4.2.2. (Nanda and Kundu, 2009). Let s(x, y) be an RR2 (TP2) function (not

necessarily a survival function) in x ∈ X and y ∈ Y, and Fi(x) be TP2 in i ∈ {1, 2}

and x ∈ X, where Fi(x) is a distribution function in x for each i. Assume that s(x, y) is

decreasing in x for every y. Then

φi(y) =

∫
X
s(x, y)dFi(x)
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is RR2 (TP2) in i ∈ {1, 2} and y ∈ Y. Conversely, if φi(y) is RR2 (TP2) in i ∈ {1, 2}

and y ∈ Y whenever Fi(x) is TP2 in i ∈ {1, 2} and x ∈ X, then s(x, y) is RR2 (TP2) in

x ∈ X and y ∈ Y.

Lemma 4.2.3. (Misra and Naqvi, 2018a). Let hi(x, θ) : [0,∞) × [0,∞) → R, i = 1, 2,

be a function and li(θ), i = 1, 2, be the Lebesgue pdf of the random variable Ti, i = 1, 2.

Let

ψ(x) =

∫∞
0
h2(x, θ)l2(θ)dθ∫∞

0
h1(x, θ)l1(θ)dθ

, x > 0.

Now, we define the following two pair of conditions for the positive function hi, i = 1, 2:

(A) h1(x, θ) or h2(x, θ) is TP2 in (x, θ) ∈ (0,∞)× (0,∞);

(B) h2(x,θ)
h1(x,θ)

increases in x ∈ (0,∞) and θ ∈ (0,∞)

and

(C) h1(x, θ) or h2(x, θ) is RR2 in (x, θ) ∈ (0,∞)× (0,∞);

(D) h2(x,θ)
h1(x,θ)

decreases in x ∈ (0,∞) and increases in θ ∈ (0,∞).

Suppose A and B (C and D) hold. Further, if any of the following three conditions hold:

(i) T1 6lr T2.

(ii) T1 6hr T2 and h1(x, θ) or h2(x, θ) is increasing in θ ∈ (0,∞).

(iii) T1 6rh T2 and h1(x, θ) or h2(x, θ) is decreasing in θ ∈ (0,∞).

Then, the function ψ(x) increases (decreases) in x ∈ [0,∞).

The proof of the next lemma follows on using Theorem 1.B.48 of Shaked and Shan-

thikumar (2007), and making arguments similar to those used in proving Lemma 1 of

Misra and Naqvi (2017).

Lemma 4.2.4. Let ψi : (0,∞)× (0,∞)→ [0,∞), i = 1, 2, be nonnegative functions such

that
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(i) ψ1(x1, θ1)ψ2(x2, θ2) − ψ1(x2, θ1)ψ2(x1, θ2) decreases in θ1 ∈ (0, θ2), for all 0 6 x1 6

x2;

(ii) ψ1(x1, θ1)ψ2(x2, θ2)−ψ1(x2, θ1)ψ2(x1, θ2)+ψ1(x1, θ2)ψ2(x2, θ1)−ψ1(x2, θ2)ψ2(x1, θ1) >

0, for all 0 < θ1 6 θ2 and 0 < x1 6 x2.

Let Ti be a random variable having probability density function li(θ), i = 1, 2, and support

[0,∞). Suppose that T1 6rh T2, then

ψ(x) =

∫∞
0
ψ2(x, θ)l2(θ)dθ∫∞

0
ψ1(x, θ)l1(θ)dθ

increases in x ∈ (0,∞).

Lemma 4.2.5. (Misra and Naqvi, 2017). Let {Kθ(·) : θ > 0} and {Lθ(·) : θ > 0} be the

families of nonnegative functions defined on R such that, for any θ > 0, Kθ(t) = Lθ(t) = 0,

whenever t 6 0, Kθ(t), Lθ(t) > 0 for all t > 0. Suppose that T1 6lr T2 and the following

conditions hold:

(i) Lθ(θ − x) or Kθ(θ − x) is TP2 in (x, θ) ∈ (0,∞)× (0,∞);

(ii) Kθ(θ − x)/Lθ(θ − x) is increasing in x ∈ (0, θ) for every fixed θ > 0;

(iii) Kθ(θ − x)/Lθ(θ − x) is increasing in θ ∈ (x,∞) for every fixed x > 0.

Then,

ψ1(x) =

∫∞
0
Kθ(θ − x)l2(θ)dθ∫∞

0
Lθ(θ − x)l1(θ)dθ

, x > 0,

is increasing in x ∈ (0,∞).

Lemma 4.2.6. (Misra and Naqvi, 2017). Suppose that T1 6hr T2 and the following

conditions hold:

(i) Kθ(θ − x) is TP2 in (x, θ) ∈ (0,∞) × (0,∞) and, for every θ > 0, Kθ(θ − x) is

increasing in θ ∈ (x,∞);

(ii) Kθ(θ − x)/Lθ(θ − x) is increasing in x ∈ (0, θ) for every fixed θ > 0;

(iii) Kθ(θ − x)/Lθ(θ − x) is increasing in θ ∈ (x,∞) for every fixed x > 0.



4.2. Preliminaries 91

Then,

ψ1(x) =

∫∞
0
Kθ(θ − x)l2(θ)dθ∫∞

0
Lθ(θ − x)l1(θ)dθ

, x > 0,

is increasing in x ∈ (0,∞).

With the help of the Lemma 4.2.4, we establish the following lemma. Here we obtain

the same property of the function ψ1(x) as in Lemma 4.2.5, but with different assumptions.

Lemma 4.2.7. Suppose that T1 6rh T2 and the following conditions hold:

(i) Lθ(θ − x) is TP2 in (x, θ) ∈ (0,∞) × (0,∞) and, for every θ > 0, Lθ(θ − x) is

decreasing in θ ∈ (x,∞);

(ii) Kθ(θ − x)/Lθ(θ − x) is increasing in x ∈ (0, θ) for every fixed θ > 0;

(iii) Kθ(θ − x)/Lθ(θ − x) is increasing in θ ∈ (x,∞) for every fixed x > 0.

Then,

ψ1(x) =

∫∞
0
Kθ(θ − x)l2(θ)dθ∫∞

0
Lθ(θ − x)l1(θ)dθ

, x > 0,

is increasing in x ∈ (0,∞).

Proof: Since T1 6rh T2, it suffices to show that conditions (i) and (ii) of Lemma 4.2.4

are satisfied with ψ1(x, θ) = Lθ(θ− x) and ψ2(x, θ) = Kθ(θ− x), (x, θ) ∈ (0,∞)× (0,∞).

Let 0 < θ1 6 θ2 <∞, 0 < x1 6 x2 <∞,

∆1 = ψ1(x1, θ1)ψ2(x2, θ2)− ψ1(x2, θ1)ψ2(x1, θ2)

= Lθ1(θ1 − x1)Kθ2(θ2 − x2)− Lθ1(θ1 − x2)Kθ2(θ2 − x1)

and

∆2 = ψ1(x1, θ1)ψ2(x2, θ2)− ψ1(x2, θ1)ψ2(x1, θ2)

+ ψ1(x1, θ2)ψ2(x2, θ1)− ψ1(x2, θ2)ψ2(x1, θ1)

= Lθ1(θ1 − x1)Kθ2(θ2 − x2)− Lθ1(θ1 − x2)Kθ2(θ2 − x1)

+ Lθ2(θ2 − x1)Kθ1(θ1 − x2)− Lθ2(θ2 − x2)Kθ1(θ1 − x1).
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We need to show that for every 0 < x1 6 x2 < ∞, ∆1 is decreasing in θ1 ∈ (0, θ2) and

∆2 > 0. For 0 < θ1 6 θ2 < ∞ and 0 < x1 6 x2 < ∞, consider the following exhaustive

cases:

Case 1. 0 < θ2 6 x1.

Here, ∆1 = 0, for all θ1 ∈ (0, θ2), which is clearly decreasing in θ1 ∈ (0, θ2). Also, ∆2 = 0.

Case 2. x1 < θ2 6 x2.

Under this case, ∆1 = 0, which is decreasing in θ1 ∈ (0, θ2), and, also ∆2 = 0.

Case 3. x2 < θ2.

In this case

∆1 =


0, θ1 6 x1

c1(θ1), x1 < θ1 6 x2

c2(θ1), x2 < θ1.

Here c1(θ1) = Lθ1(θ1 − x1)Kθ2(θ2 − x2) which, by condition (i), decreases in θ1 ∈ (0, θ2)

and

c2(θ1) = Lθ1(θ1 − x2)

[
Kθ2(θ2 − x2)

Lθ1(θ1 − x1)

Lθ1(θ1 − x2)
−Kθ2(θ2 − x1)

]
is decreasing in θ1 ∈ (0, θ2) by condition (i). Thus, it follows that ∆1 is decreasing in

θ1 ∈ (0, θ2). Now,

∆2 =


0, θ1 6 x1

d1(θ1), x1 < θ1 6 x2

d2(θ1), x2 < θ1.

Where,

d1(θ1) = Lθ1(θ1 − x1)Kθ2(θ2 − x2)− Lθ2(θ2 − x2)Kθ1(θ1 − x1)

=
Kθ2(θ2 − x2)

Lθ2(θ2 − x2)
Lθ1(θ1 − x1)Lθ2(θ2 − x2)− Lθ2(θ2 − x2)Kθ1(θ1 − x1)

>

[
Kθ2(θ2 − x1)

Lθ2(θ2 − x1)
− Kθ1(θ1 − x1)

Lθ1(θ1 − x1)

]
Lθ1(θ1 − x1)Lθ2(θ2 − x2) > 0,
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using conditions (ii) and (iii), respectively. Now,

d2(θ1) = Lθ1(θ1 − x1)Kθ2(θ2 − x2)− Lθ1(θ1 − x2)Kθ2(θ2 − x1)

+ Lθ2(θ2 − x1)Kθ1(θ1 − x2)− Lθ2(θ2 − x2)Kθ1(θ1 − x1)

>
Kθ2(θ2 − x1)

Lθ2(θ2 − x1)
[Lθ1(θ1 − x1)Lθ2(θ2 − x2)− Lθ1(θ1 − x2)Lθ2(θ2 − x1)]

+
Kθ1(θ1 − x1)

Lθ1(θ1 − x1)
[Lθ1(θ1 − x2)Lθ2(θ2 − x1)− Lθ1(θ1 − x1)Lθ2(θ2 − x2)]

=

[
Kθ2(θ2 − x1)

Lθ2(θ2 − x1)
− Kθ1(θ1 − x1)

Lθ1(θ1 − x1)

]
× [Lθ1(θ1 − x1)Lθ2(θ2 − x2)− Lθ1(θ1 − x2)Lθ2(θ2 − x1)] > 0,

using conditions (i)-(iii). Hence the result follows.

4.3 Stochastic Comparisons based on vrl Order

Here we enhance the study on stochastic comparisons of RLRTs and ITRTs based on

vrl order under the assumption that X and Y are not necessarily independent. To this

aim, first we deal with some simple stochastic comparison results on RLRT/ITRT in

one sample problem. Later, we provide stochastic comparisons of two systems failed at

two different random times or having different random ages based on vrl order. Before

discussing the main results, we briefly review the results available in the literature on

stochastic comparisons of RLRTs and ITRTs. In order to make the presentation self-

contained, we only restate the results without proof. In the first two propositions, two

RLRTs/ITRTs are compared with respect to lr order.

Proposition 4.3.1. (Misra, N. and Naqvi, S., 2018a). Let X, Z1 and Y , Z2 be nonneg-

ative random variables not necessarily independent. Suppose Z1 6lr Z2 and the following

assumptions hold:

(i) Xθ has ILR (DLR) for every θ > 0 and Xθ1 6lr (>lr)Xθ2, for all θ1 6 θ2;

or,

Y θ has ILR (DLR) for every θ > 0 and Y θ1 6lr (>lr)Y θ2, for all θ1 6 θ2;



94 Chapter 4. Stochastic Properties of RLRT (ITRT) based on VRL

(ii) Xθ 6lr (>lr)Y θ, for all θ > 0;

(iii) gθ(x+θ)
fθ(x+θ)

is increasing in θ ∈ (0,∞) for every fixed x > 0.

Then, XZ1 6lr (>lr)YZ2.

Proposition 4.3.2. (Misra, N. and Naqvi, S., 2017). Suppose Z1 6lr Z2 and the follow-

ing assumptions hold:

(i) for every θ > 0, Xθ has ILR and Xθ2 6lr Xθ1, for all θ1 6 θ2;

or,

for every θ > 0, Y θ has ILR and Y θ2 6lr Y θ1, for all θ1 6 θ2;

(ii) Xθ 6lr Y θ, for all θ > 0;

(iii) for every fixed x > 0, gθ(θ−x)
fθ(θ−x)

is increasing in θ ∈ (x,∞).

Then, X(Z1) 6lr Y(Z2).

The following two results present stochastic comparisons in terms of the hazard rate

order.

Proposition 4.3.3. (Misra, N. and Naqvi, S., 2018a). Let X, Z1 and Y , Z2 be nonneg-

ative random variables not necessarily independent. Suppose Z1 6lr Z2 and the following

assumptions hold:

(i) Xθ has IFR (DFR) for every θ > 0 and Xθ1 6hr (>hr)Xθ2, for all θ1 6 θ2;

or,

Y θ has IFR (DFR) for every θ > 0 and Y θ1 6hr (>hr)Y θ2, for all θ1 6 θ2;

(ii) Xθ 6hr (>hr)Y θ, for all θ > 0;

(iii) Gθ(x+θ)

F θ(x+θ)
is increasing in θ ∈ (0,∞) for every fixed x > 0.

Then, XZ1 6hr (>hr)YZ2.

Proposition 4.3.4. (Misra, N. and Naqvi, S., 2017). Suppose Z1 6lr Z2 and the follow-

ing assumptions hold:
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(i) for every θ > 0, Xθ has DRHR and Xθ2 6rh Xθ1, for all θ1 6 θ2;

or,

for every θ > 0, Y θ has DRHR and Y θ2 6rh Y θ1, for all θ1 6 θ2;

(ii) Xθ 6rh Y θ, for all θ > 0;

(iii) for every fixed x > 0, Gθ(θ−x)
Fθ(θ−x)

is increasing in θ ∈ (x,∞).

Then, X(Z1) 6hr Y(Z2).

Further, it may be of interest to examine the trade-off required in conditions of Propo-

sition 4.3.4 if the lr ordering between Z1 and Z2 is replaced by hr ordering.

Proposition 4.3.5. (Misra, N. and Naqvi, S., 2017). Suppose conditions (i)-(iii) of

Proposition 4.3.4 hold. If Z1 6hr Z2 and Gθ(θ − x) is increasing in θ ∈ (x,∞), then

X(Z1) 6hr Y(Z2).

The following proposition provides sufficient conditions under which XZ1 and YZ2 are

ordered under mrl order.

Proposition 4.3.6. (Misra, N. and Naqvi, S., 2018a). Let X, Z1 and Y , Z2 be nonneg-

ative random variables not necessarily independent. Suppose Z1 6lr Z2 and the following

assumptions hold:

(i) Xθ has DMRL (IMRL) for every θ > 0 and Xθ1 6mrl (>mrl)Xθ2, for all θ1 6 θ2;

or,

Y θ has DMRL (IMRL) for every θ > 0 and Y θ1 6mrl (>mrl)Y θ2, for all θ1 6 θ2;

(ii) Xθ 6mrl (>mrl)Y θ, for all θ > 0;

(iii)
∫∞
x+θ Gθ(u)du∫∞
x+θ F θ(u)du

is increasing in θ ∈ (0,∞) for every fixed x > 0.

Then, XZ1 6mrl (>mrl)YZ2.

Now, two inactivity time random variables with respect to mrl order are compared.
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Proposition 4.3.7. (Misra, N. and Naqvi, S., 2017). Suppose Z1 6lr Z2 and the follow-

ing assumptions hold:

(i) for every θ > 0, Xθ has IMIT and Xθ2 6mit Xθ1, for all θ1 6 θ2;

or,

for every θ > 0, Y θ has IMIT and Y θ2 6mit Y θ1, for all θ1 6 θ2;

(ii) Xθ 6mit Y θ, for all θ > 0;

(iii) for every fixed x > 0,
∫ θ−x
0 Gθ(u)du∫ θ−x
0 Fθ(u)du

is increasing in θ ∈ (x,∞).

Then, X(Z1) 6mrl Y(Z2).

Under the assumption that Z1 6hr Z2, the following proposition compares two ITRTs

with respect to mrl order.

Proposition 4.3.8. (Misra, N. and Naqvi, S., 2017). Suppose conditions (i)-(iii) of

Proposition 4.3.7 hold. If Z1 6hr Z2 and
∫ θ−x

0
Gθ(u)du is increasing in θ ∈ (x,∞), then

X(Z1) 6mrl Y(Z2).

The above propositions exhibit that two RLRTs or ITRTs are stochastically compa-

rable with respect to lr, hr and mrl orders. In the sequel we provide some results which

present sufficient conditions for stochastic monotonicity of RLRT/ITRT in terms of the

vrl order. From Theorems 4.3.1-4.3.4 we assume that Xθ d
= Y θ, for all θ > 0 where

d
= means equality in distribution. The first result is related to stochastic comparison of

RLRT based on vrl order.

Theorem 4.3.1. Suppose Z1 6hr Z2 and the following assumptions are fulfilled:

• Xθ has IVRL for every θ > 0;

• Xθ1 6vrl Xθ2 for all 0 < θ1 6 θ2

• and
∫∞
x+θ

∫∞
t
F θ(u)dudt is increasing in θ ∈ (0,∞) for every fixed x > 0.

Then, XZ1 6vrl XZ2.
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Proof: Denote by F , H1 and H2 the survival functions of X, Z1 and Z2, respectively.

Since Xθ has IVRL, and Xθ1 6vrl Xθ2 , so∫ ∞
x+θ

∫ ∞
t

F θ(u)dudt is TP2 in (x, θ) ∈ (0,∞)× (0,∞). (4.3.1)

On the other hand,

H i(x) is TP2 in (i, x) ∈ {1, 2} × (0,∞) (4.3.2)

in accordance with Z1 6hr Z2. Again,∫ ∞
x+θ

∫ ∞
t

F θ(u)dudt is increasing in θ for each fixed x. (4.3.3)

Therefore, on using (4.3.1), (4.3.2) and (4.3.3), we obtain from Lemma 4.2.1,∫ ∞
0

∫ ∞
x+θ

∫ ∞
t

F θ(u)dudtdHi(θ) is TP2 in (i, x) ∈ {1, 2} × (0,∞).

Therefore, ∫ ∞
0

∫ ∞
x

∫ ∞
t+θ

F θ(u)dudtdHi(θ) is TP2 in (i, x) ∈ {1, 2} × (0,∞).

This gives that∫ ∞
0

∫ ∞
x

∫ ∞
t

F θ(θ + u)dudtdHi(θ) is TP2 in (i, x) ∈ {1, 2} × (0,∞).

Or equivalently,∫ ∞
x

∫ ∞
0

∫ ∞
t

F θ(θ + u)dudHi(θ)dt is TP2 in (i, x) ∈ {1, 2} × (0,∞),

which implies that
∫∞
x

∫∞
t

∫∞
0
F θ(θ + u)dHi(θ)dudt is TP2 in (i, x) ∈ {1, 2} × (0,∞).

Hence, ∫∞
x

∫∞
t

∫∞
0
F θ(θ + u)dH2(θ)dudt∫∞

x

∫∞
t

∫∞
0
F θ(θ + u)dH1(θ)dudt

is increasing in x.

Thus, XZ1 6vrl XZ2 . �

Under the assumptions that X, Z1 and X, Z2 are independent random variables, the

above theorem yields the following result as given in Theorem 2.3.4.
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Corollary 4.3.1. If Z1 6hr Z2 and X is of IVRL, then (Z1)(X) 6vrl (Z2)(X).

Now we consider the following example to verify Theorem 4.3.1.

Example 4.3.1. Suppose the joint pdf of (X,Z1) is

f(x, y) =
1

y
e−(x

y
+y), x, y > 0

and that of (Y, Z2) is

g(x, y) = e−(x
y

+y), x, y > 0.

Now the marginal pdf of Z1 is fZ1(y) = e−y, y > 0 and the conditional pdf of X given

that Z1 = θ is

fX|Z1=θ(x) =
1

θ
e−

x
θ , x, θ > 0.

Also, the marginal pdf of Z2 and the conditional pdf of Y given that Z2 = θ are

gZ2(y) = ye−y, y > 0 and gY |Z2=θ(x) =
1

θ
e−

x
θ x, θ > 0.

Therefore, Xθ d
= Y θ as fX|Z1=θ = gY |Z2=θ. Now fZ1(y)/gZ2(y) = 1

y
is decreasing in y

giving that Z1 6lr Z2, or equivalently, Z1 6hr Z2. Also, it can be seen that Xθ has IVRL

for every θ > 0. Since

FX|Z1=θ1(x)

FX|Z1=θ2(x)
=

e
− x
θ1

e
− x
θ2

= e
−
(

1
θ1
− 1
θ2

)
x

= e
− θ2−θ1

θ1θ2
x

is decreasing in x ∈ (0,∞) for all 0 < θ1 6 θ2, so Xθ1 6hr Xθ2 for all 0 < θ1 6 θ2, or

equivalently, Xθ1 6vrl Xθ2 for all 0 < θ1 6 θ2. Further,∫ ∞
x+θ

∫ ∞
t

F θ(u)dudt =

∫ ∞
x+θ

∫ ∞
t

e−
u
θ dudt

=

∫ ∞
x+θ

θe−
t
θ dt

= θ2e−(x
θ

+1), which is increasing in θ.

Thus, all the conditions of Theorem 4.3.1 are satisfied. Now∫∞
0
F θ(θ + x)gz2(θ)dθ∫∞

0
F θ(θ + x)fZ1(θ)dθ

=

∫∞
0
θe−(x

θ
+θ)dθ∫∞

0
e−(x

θ
+θ)dθ

= α(x), say
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Figure 4.3.1: Plot of P (v) against v ∈ [0, 1] (Example 4.3.1)

is increasing in x ∈ (0,∞) as shown in Figure 4.3.1. It is to be mentioned here that the

substitution v = e−x has been used while plotting the curve so that α(x) = P (v), say.

Hence, XZ1 6hr XZ2, which in turn gives that XZ1 6vrl XZ2.

In the following theorem, we investigate sufficient conditions to establish vrl order

between X(Z1) and X(Z2).

Theorem 4.3.2. Let X, Z1 and Z2 be three nonnegative random variables where X is not

necessarily independent of Z1 and Z2. Suppose Z1 6hr Z2 and the following conditions

hold:

• Xθ has IVIT for every θ > 0;

• Xθ2 6vit Xθ1 for all 0 < θ1 6 θ2

• and
∫ θ−x

0

∫ t
0
Fθ(u)dudt is increasing in θ ∈ (x,∞) for every fixed x > 0.

Then, X(Z1) 6vrl X(Z2).

Proof: Denote by F, H1 and H2 the cdfs of X, Z1 and Z2, respectively. Since Xθ has

IVIT and Xθ2 6vit Xθ1 so
∫ θ−x

0

∫ t
0
Fθ(u)dudt is TP2 in (x, θ) ∈ (0,∞) × (0,∞). Now,

Z1 6hr Z2 implies that H i(x) is TP2 in (i, x) ∈ {1, 2}×(0,∞) and again
∫ θ−x

0

∫ t
0
Fθ(u)dudt

is increasing in θ for each fixed x. So, from Lemma 4.2.1, it follows that∫ ∞
0

∫ θ−x

0

∫ t

0

Fθ(u)dudtdHi(θ) is TP2 in (i, x) ∈ {1, 2} × (0,∞).
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Or equivalently,∫ ∞
x

∫ θ

x

∫ θ−t

0

Fθ(u)dudtdHi(θ) is TP2 in (i, x) ∈ {1, 2} × (0,∞),

which in turn gives that∫ ∞
x

∫ ∞
t

∫ θ−t

0

Fθ(u)dudHi(θ)dt is TP2 in (i, x) ∈ {1, 2} × (0,∞).

Therefore, ∫ ∞
x

∫ ∞
t

∫ θ

t

Fθ(θ − u)dudHi(θ)dt is TP2 in (i, x) ∈ {1, 2} × (0,∞),

which is equivalent to
∫∞
x

∫∞
t

∫∞
u
Fθ(θ − u)dHi(θ)dudt is TP2 in (i, x) ∈ {1, 2} × (0,∞).

Or equivalently, ∫∞
x

∫∞
t

∫∞
u
Fθ(θ − u)dH2(θ)dudt∫∞

x

∫∞
t

∫∞
u
Fθ(θ − u)dH1(θ)dudt

is increasing in x.

Hence, X(Z1) 6vrl X(Z2). �

As an immediate consequence of Theorem 4.3.2, we have the following corollary by

assuming X, Z1 and X, Z2 are independently distributed.

Corollary 4.3.2. If Z1 6hr Z2 and X is of IVIT, then (Z1)X 6vrl (Z2)X .

Remark 4.3.1. The result of Corollary 4.3.2 has been obtained in Theorem 2.3.3.

We now present the following example to illustrate the application of the above result.

Example 4.3.2. Suppose the joint pdf of (X,Z1) is

f(x, y) =

 e−y

y+1
, 0 < x < y

e−x

y+1
, x > y

and that of (Y, Z2) is

g(x, y) =

 e−y

2
, 0 < x < y

e−x

2
, x > y

Now the marginal pdf of Z1 and the conditional pdf of X given that Z1 = θ are respectively

fZ1(y) =

 e−y, y > 0

0, otherwise
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and

fX|Z1=θ(x) =

 1
θ+1

, 0 < x < θ

eθ−x

θ+1
, x > θ.

Also, the marginal pdf of Z2 is

gZ2(y) =


e−y(y+1)

2
, y > 0

0, otherwise

and the conditional pdf of Y given that Z2 = θ is

f(x, y) =

 e−y

y+1
, 0 < x < y

e−x

y+1
, x > y

gY |Z2=θ(x) =

 1
θ+1

, 0 < x < θ

eθ−x

θ+1
, x > θ.

Therefore, Xθ d
= Y θ as fX|Z1=θ = gY |Z2=θ. It is clear that Z1 6hr Z2. The cdf of Xθ is

Fθ(x) =

 x
θ+1

, 0 < θ < y

1− eθ−x

θ+1
, x > θ

Hence, the hazard rate function of Xθ is 1
x
, 0 < θ < y

1
(θ+1)ex−θ−1

, x > θ,

which is decreasing in x ∈ (0,∞) for every θ > 0. Hence, Xθ has DRHR, which is turn

gives that Xθ has IVIT. Since

FX|Z1=θ1(x)

FX|Z1=θ2(x)
=


θ2+1
θ1+1

, 0 < θ < θ2

1− e
θ1−x
θ1+1

1− e
θ2−x
θ2+1

, x > θ2

is increasing in x ∈ (0,∞) for all 0 < θ1 6 θ2, so Xθ2 6rh Xθ1 for all 0 < θ1 6 θ2, or

equivalently, Xθ2 6V IT Xθ1 for all 0 < θ1 6 θ2. Further, for 0 < x < θ <∞,∫ θ−x

0

∫ t

0

Fθ(u)dudt =
(θ − x)3

6(θ + 1)
,

which is increasing in θ. Therefore, all the conditions of Theorem 4.3.2 are satisfied.

Hence, from Theorem 4.3.2, we have X(Z1) 6V RL X(Z2).
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In the following theorem we perform stochastic comparison of RLRT based on vrl

order extending a similar result given in Chapter 2 derived under independence of X and

Z1 (X and Z2) to include situations where they may be dependent random variables.

Theorem 4.3.3. Let Z1 6rh Z2 and the following assumptions are fulfilled:

• Xθ has IVRL (DVRL) for every θ > 0;

• Xθ1 6vrl (>vrl)Xθ2 for all 0 < θ1 6 θ2

• and
∫∞
x+θ

∫∞
t
F θ(u)dudt is decreasing in θ ∈ (0,∞) for every fixed x > 0.

Then, XZ1 6vrl (>vrl)XZ2. Conversely, if XZ1 6vrl (>vrl)XZ2 and Z1 6rh Z2 then Xθ has

IVRL (DVRL) and Xθ1 6vrl (>vrl)Xθ2 for all 0 < θ1 6 θ2.

Proof: Since Xθ has IVRL (DVRL) and Xθ1 6vrl (>vrl)Xθ2 , so∫ ∞
x+θ

∫ ∞
t

F θ(u)dudt is TP2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞).

Again, Z1 6rh Z2 implies that Hi(x) is TP2 in (i, x) ∈ {1, 2} × (0,∞) and, also∫ ∞
x+θ

∫ ∞
t

F θ(u)dudt is decreasing in θ for each fixed x.

Therefore, from Lemma 4.2.2, it follows that∫ ∞
0

∫ ∞
x+θ

∫ ∞
t

F θ(u)dudtdHi(θ) is TP2 (RR2) in (i, x) ∈ {1, 2} × (0,∞).

Or equivalently,∫ ∞
0

∫ ∞
x

∫ ∞
t+θ

F θ(u)dudtdHi(θ) is TP2 (RR2) in (i, x) ∈ {1, 2} × (0,∞).

This gives that∫ ∞
0

∫ ∞
x

∫ ∞
t

F θ(θ + u)dudtdHi(θ) is TP2 (RR2) in (i, x) ∈ {1, 2} × (0,∞),

which yields∫ ∞
x

∫ ∞
0

∫ ∞
t

F θ(θ + u)dudHi(θ)dt is TP2 (RR2) in (i, x) ∈ {1, 2} × (0,∞).
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Therefore,∫ ∞
x

∫ ∞
t

∫ ∞
0

F θ(θ + u)dHi(θ)dudt is TP2 (RR2) in (i, x) ∈ {1, 2} × (0,∞).

Or equivalently,∫∞
x

∫∞
t

∫∞
0
F θ(θ + u)dH2(θ)dudt∫∞

x

∫∞
t

∫∞
0
F θ(θ + u)dH1(θ)dudt

is increasing (decreasing) in x.

Hence, XZ1 6vrl (>vrl)XZ2 .

Conversely, if XZ1 6vrl (>vrl)XZ2 , then∫ ∞
x

∫ ∞
t

∫ ∞
0

F θ(θ + u)dHi(θ)dudt is TP2 ( RR2) in (i, x) ∈ {1, 2} × (0,∞).

Or equivalently,∫ ∞
0

∫ ∞
x+θ

∫ ∞
t

F θ(u)dudtdHi(θ) is TP2 (RR2) in (i, x) ∈ {1, 2} × (0,∞),

and Z1 6rh Z2 implies that Hi(x) is TP2 in (i, x) ∈ {1, 2} × (0,∞) so from Lemma 4.2.2,

it follows that∫ ∞
x+θ

∫ ∞
t

F θ(u)dudt is TP2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞).

Hence, Xθ has IVRL (DVRL) and Xθ1 6vrl (>vrl)Xθ2 . �

Assume that X is independent of Z1 and Z2 in Theorem 4.3.3 then we get the following

corollary which was presented as Theorem 2.3.6 in Chapter 2.

Corollary 4.3.3. If Z1 6rh Z2 and X is of DVRL, then (Z1)(X) >vrl (Z2)(X).

Consider the following example in support of Theorem 4.3.3.

Example 4.3.3. Let the joint pdfs of (X,Z1) and (Y, Z2) be

f(x, y) = 2(y + 1)e−x−2y−xy and g(x, y) = (1 + y)e−x−y−xy; x, y > 0,

respectively. Then the marginal pdfs of Z1 and Z2 are

fZ1(y) = 2e−2y and gZ2(y) = e−y; y > 0.
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So the conditional pdf of X given that Z1 = θ is

fX|Z1=θ(x) = (1 + θ)e−(1+θ)x; x, θ > 0

and that of Y given that Z2 = θ is

gY |Z2=θ(x) = (1 + θ)e−(1+θ)x; x, θ > 0.

Therefore, Xθ d
= Y θ for all θ > 0. Now, one can easily verify that Z1 6lr Z2 which in

turn implies that Z1 6rh Z2. Also, the hazard rate function of Xθ is

fX|Z1=θ(x)

FX|Z1=θ(x)
= 1 + θ.

Hence, Xθ has IFR. Or equivalently, Xθ has DVRL for every θ > 0. Now

FX|Z1=θ1(x)

FX|Z1=θ2(x)
=
e−(1+θ1)x

e−(1+θ2)x
= e(θ2−θ1)x

is increasing in x ∈ (0,∞) for all 0 < θ1 6 θ2. Thus, Xθ1 >vrl Xθ2 for all 0 < θ1 6 θ2.

Further, ∫ ∞
x+θ

∫ ∞
t

F θ(u)dudt =

∫ ∞
x+θ

∫ ∞
t

e−(1+θ)ududt

=
1

1 + θ

∫ ∞
x+θ

e−(1+θ)tdt

=
1

(1 + θ)2

[
−e−(1+θ)t

]∞
x+θ

=
e−(1+θ)(x+θ)

(1 + θ)2
, which is decreasing in θ.

Therefore, all the conditions of Theorem 4.3.3 are satisfied. Now,

α(x) =

∫∞
0
F θ(θ + x)gz2(θ)dθ∫∞

0
F θ(θ + x)fZ1(θ)dθ

=

∫∞
0
e−(1+θ)(x+θ)e−θdθ∫∞

0
2e−(1+θ)(x+θ)e−2θdθ

is decreasing in x ∈ (0,∞) as shown in Figure 4.3.2. Note that the substitution v = e−x

has been used while plotting the curve so that α(x) = p(v), say. Hence, XZ1 >hr XZ2,

which in turn gives that XZ1 >vrl XZ2.

In the following theorem, reversed hazard rate order is assumed between Z1 and Z2

and sufficient conditions are obtained to establish vrl order between X(Z1) and X(Z2).
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Figure 4.3.2: Plot of p(v) against v ∈ [0, 1] (Example 4.3.3)

Theorem 4.3.4. Suppose Z1 6rh Z2 and the following conditions are satisfied:

• Xθ has IVIT for every θ > 0;

• Xθ2 6vit Xθ1 for all 0 < θ1 6 θ2

• and
∫ θ−x

0

∫ t
0
Fθ(u)dudt is decreasing in θ ∈ (x,∞) for every fixed x > 0.

Then, X(Z1) 6vrl X(Z2). Conversely, if X(Z1) 6vrl X(Z2) and Z1 6rh Z2, then Xθ has IVIT

and Xθ2 6vit Xθ1 for all 0 < θ1 6 θ2.

Proof: Since Xθ has IVIT and Xθ2 6vit Xθ1 , so∫ θ−x

0

∫ t

0

Fθ(u)dudt is TP2 in (x, θ) ∈ (0,∞)× (0,∞).

Now Z1 6rh Z2 implies that Hi(x) is TP2 in (i, x) ∈ {1, 2} × (0,∞) and again∫ θ−x

0

∫ t

0

Fθ(u)dudt is decreasing in θ for each fixed x.

Thus, from Lemma 4.2.2, it follows that∫ ∞
0

∫ θ−x

0

∫ t

0

Fθ(u)dudtdHi(θ) is TP2 in (i, x) ∈ {1, 2} × (0,∞).

Or equivalently,∫ ∞
x

∫ θ

x

∫ θ−t

0

Fθ(u)dudtdHi(θ) is TP2 in (i, x) ∈ {1, 2} × (0,∞).
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This gives that∫ ∞
x

∫ ∞
t

∫ θ−t

0

Fθ(u)dudHi(θ)dt is TP2 in (i, x) ∈ {1, 2} × (0,∞).

Therefore, ∫ ∞
x

∫ ∞
t

∫ θ

t

Fθ(θ − u)dudHi(θ)dt is TP2 in (i, x) ∈ {1, 2} × (0,∞),

which in turn implies that∫ ∞
x

∫ ∞
t

∫ ∞
u

Fθ(θ − u)dHi(θ)dudt is TP2 in (i, x) ∈ {1, 2} × (0,∞).

Thus, ∫∞
x

∫∞
t

∫∞
u
Fθ(θ − u)dH2(θ)dudt∫∞

x

∫∞
t

∫∞
u
Fθ(θ − u)dH1(θ)dudt

is increasing in x.

Hence, X(Z1) 6vrl X(Z2).

Conversely, if X(Z1) 6vrl X(Z2) then∫ ∞
x

∫ ∞
t

∫ ∞
θ

Fθ(θ − u)dHi(θ)dudt is TP2 in (i, x) ∈ {1, 2} × (0,∞).

Or equivalently,∫ ∞
0

∫ θ−x

0

∫ t

0

Fθ(u)dudtdHi(θ) is TP2 in (i, x) ∈ {1, 2} × (0,∞).

Again, Z1 6rh Z2 implies that Hi(x) is TP2 in (i, x) ∈ {1, 2} × (0,∞). So, from Lemma

4.2.2, it follows that∫ θ−x

0

∫ t

0

Fθ(u)dudt is TP2 in (x, θ) ∈ (0,∞)× (0,∞),

which is equivalent to Xθ has IVIT and Xθ2 6vit Xθ1 for all θ1 6 θ2. �

Stochastic comparisons of RLRT of two systems having different random ages are

investigated in the upcoming theorems. The following result expands Theorem 2.3.5 of

Chapter 2 to the case when X and Z1 (Y and Z2) are dependent random variables.

Theorem 4.3.5. Let X, Z1 and Y , Z2 be nonnegative random variables not necessarily

independent. Suppose Z1 6lr Z2 and the following assumptions hold:
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(i) Xθ has IVRL (DVRL) for every θ > 0 and Xθ1 6vrl (>vrl)Xθ2, for all θ1 6 θ2;

or,

Y θ has IVRL (DVRL) for every θ > 0 and Y θ1 6vrl (>vrl)Y θ2, for all θ1 6 θ2;

(ii) Xθ 6vrl (>vrl)Y θ, for all θ > 0;

(iii)
∫∞
x+θ

∫∞
t Gθ(u)dudt∫∞

x+θ

∫∞
t F θ(u)dudt

is increasing in θ ∈ (0,∞) for every fixed x > 0.

Then, XZ1 6vrl (>vrl)YZ2.

Proof: Suppose Xθ has IVRL (DVRL) and Xθ1 6vrl (>vrl)Xθ2 , so∫ ∞
x+θ

∫ ∞
t

F θ(u)dudt is TP2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞).

Again, Xθ 6vrl (>vrl)Y θ which implies that∫∞
x+θ

∫∞
t
Gθ(u)dudt∫∞

x+θ

∫∞
t
F θ(u)dudt

is increasing (decreasing) in x ∈ (0,∞).

Also, Z1 6lr Z2 and ∫∞
x+θ

∫∞
t
Gθ(u)dudt∫∞

x+θ

∫∞
t
F θ(u)dudt

is increasing in θ ∈ (0,∞).

Therefore, from Lemma 4.2.3(i) it follows that∫ ∞
0

(∫ ∞
x+θ

∫ ∞
t

Gθ(u)dudt

)
hi(θ)dθ is TP2 (RR2) in (i, x) ∈ {1, 2} × (0,∞).

Thus, ∫∞
0

(∫∞
x+θ

∫∞
t
Gθ(u)dudt

)
h2(θ)dθ∫∞

0

(∫∞
x+θ

∫∞
t
F θ(u)dudt

)
h1(θ)dθ

is increasing (decreasing) in x ∈ (0,∞).

Hence, XZ1 6vrl (>vrl)YZ2 .

Again, if Y θ has IVRL (DVRL) and Y θ1 6vrl (>vrl)Y θ2 , then∫ ∞
x+θ

∫ ∞
t

Gθ(u)dudt is TP2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞).

Now, Xθ 6vrl (>vrl)Y θ, which in turn gives that∫∞
x+θ

∫∞
t
Gθ(u)dudt∫∞

x+θ

∫∞
t
F θ(u)dudt

is increasing (decreasing) in x ∈ (0,∞).
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Also, Z1 6lr Z2 and ∫∞
x+θ

∫∞
t
Gθ(u)dudt∫∞

x+θ

∫∞
t
F θ(u)dudt

is increasing in θ ∈ (0,∞).

Therefore, with the help of Lemma 4.2.3(i) it follows that∫ ∞
0

(∫ ∞
x+θ

∫ ∞
t

Gθ(u)dudt

)
hi(θ)dθ is TP2 (RR2) in (i, x) ∈ {1, 2} × (0,∞).

Thus, ∫∞
0

(∫∞
x+θ

∫∞
t
Gθ(u)dudt

)
h2(θ)dθ∫∞

0

(∫∞
x+θ

∫∞
t
F θ(u)dudt

)
h1(θ)dθ

is increasing (decreasing) in x ∈ (0,∞).

Hence, XZ1 6vrl (>vrl)YZ2 . �

The next result provides some sufficient conditions for stochastic comparisons of RL-

RTs under the assumption of (reversed) hazard rate order.

Theorem 4.3.6. Suppose conditions (i)-(iii) of Theorem 4.3.5 hold true and either of

the following assumptions is fulfilled:

(i) Z1 6hr Z2 and
∫∞
x+θ

∫∞
t
Gθ(u)dudt or

∫∞
x+θ

∫∞
t
F θ(u)dudt is increasing in θ ∈ (0,∞);

(ii) Z1 6rh Z2 and
∫∞
x+θ

∫∞
t
Gθ(u)dudt or

∫∞
x+θ

∫∞
t
F θ(u)dudt is decreasing in θ ∈ (0,∞).

Then, XZ1 6vrl (>vrl)YZ2.

Proof: From condition (i) of Theorem 4.3.5 we have∫ ∞
x+θ

∫ ∞
t

F θ(u)dudt is TP2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞),

or ∫ ∞
x+θ

∫ ∞
t

Gθ(u)dudt is TP2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞).

Using conditions (ii) and (iii) of Theorem 4.3.5 we have∫∞
x+θ

∫∞
t
Gθ(u)dudt∫∞

x+θ

∫∞
t
F θ(u)dudt

is increasing (decreasing) in x ∈ (0,∞),
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and ∫∞
x+θ

∫∞
t
Gθ(u)dudt∫∞

x+θ

∫∞
t
F θ(u)dudt

is increasing in θ ∈ (0,∞).

Also, we have the given conditions Z1 6hr Z2 and
∫∞
x+θ

∫∞
t
Gθ(u)dudt or

∫∞
x+θ

∫∞
t
F θ(u)dudt

is increasing in θ ∈ (0,∞). Thus, on using Lemma 4.2.3(ii) we get∫∞
0

(∫∞
x+θ

∫∞
t
Gθ(u)dudt

)
h2(θ)dθ∫∞

0

(∫∞
x+θ

∫∞
t
F θ(u)dudt

)
h1(θ)dθ

is increasing (decreasing) in x ∈ (0,∞).

Hence, XZ1 6vrl (>vrl)YZ2 .

Again, if Z1 6rh Z2 and
∫∞
x+θ

∫∞
t
Gθ(u)dudt or

∫∞
x+θ

∫∞
t
F θ(u)dudt is decreasing in

θ ∈ (0,∞). Then, on using Lemma 4.2.3(iii), we get∫∞
0

(∫∞
x+θ

∫∞
t
Gθ(u)dudt

)
h2(θ)dθ∫∞

0

(∫∞
x+θ

∫∞
t
F θ(u)dudt

)
h1(θ)dθ

is increasing (decreasing) in x ∈ (0,∞).

Hence, XZ1 6vrl (>vrl)YZ2 . �

In what follows, we would like to perform stochastic comparisons of ITRT of two

systems failed at different random times. Below we compare inactivity times of two

systems, failed at two different random times, with respect to vrl order.

Theorem 4.3.7. Suppose Z1 6lr Z2 and the following assumptions hold:

(i) for every θ > 0, Xθ has IVIT and Xθ2 6vit Xθ1, for all θ1 6 θ2;

or,

for every θ > 0, Y θ has IVIT and Y θ2 6vit Y θ1, for all θ1 6 θ2;

(ii) Xθ 6vit Y θ, for all θ > 0;

(iii) for every fixed x > 0,
∫ θ−x
0

∫ t
0 Gθ(u)dudt∫ θ−x

0

∫ t
0 Fθ(u)dudt

is increasing in θ ∈ (x,∞).

Then, X(Z1) 6vrl Y(Z2).

Proof: Since Xθ has IVIT and Xθ2 6vit Xθ1 , so∫ θ−x

0

∫ t

0

Fθ(u)dudt is TP2 in (x, θ) ∈ (0,∞)× (0,∞).
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Again, Xθ 6vit Y θ, which implies that∫ θ−x
0

∫ t
0
Gθ(u)dudt∫ θ−x

0

∫ t
0
Fθ(u)dudt

is increasing in x ∈ (0, θ).

Also, Z1 6lr Z2 and ∫ θ−x
0

∫ t
0
Gθ(u)dudt∫ θ−x

0

∫ t
0
Fθ(u)dudt

is increasing in θ ∈ (x,∞).

Thus, from Lemma 4.2.5 it follows that∫∞
0

(∫ θ−x
0

∫ t
0
Gθ(u)dudt

)
h2(θ)dθ∫∞

0

(∫ θ−x
0

∫ t
0
Fθ(u)dudt

)
h1(θ)dθ

is increasing in x ∈ (0,∞).

Hence, X(Z1) 6vrl Y(Z2).

Again, if Y θ has IVIT and Y θ2 6vit Y θ1 then∫ θ−x

0

∫ t

0

Gθ(u)dudt is TP2 in (x, θ) ∈ (0,∞)× (0,∞).

Now, Xθ 6vit Y θ, which in turn gives that∫ θ−x
0

∫ t
0
Gθ(u)dudt∫ θ−x

0

∫ t
0
Fθ(u)dudt

is increasing in x ∈ (0, θ).

Also, Z1 6lr Z2 and ∫ θ−x
0

∫ t
0
Gθ(u)dudt∫ θ−x

0

∫ t
0
Fθ(u)dudt

is increasing in θ ∈ (x,∞)

yield from Lemma 4.2.5∫∞
0

(∫ θ−x
0

∫ t
0
Gθ(u)dudt

)
h2(θ)dθ∫∞

0

(∫ θ−x
0

∫ t
0
Fθ(u)dudt

)
h1(θ)dθ

is increasing in x ∈ (0,∞).

Hence, X(Z1) 6vrl Y(Z2). �

Consider the following example to illustrate an application of the theorem.

Example 4.3.4. Suppose the joint pdfs of (X,Z1) and (Y, Z2) are

f(x, y) = 4(y + 1)e−2x−2y−2xy and g(x, y) = (y + 1)e−x−y−xy; x, y > 0.
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Now the marginal pdf of Z1 and the conditional pdf of X given that Z1 = θ are

fZ1(y) = 2e−2y, y > 0 and fX|Z1=θ(x) = 2(1 + θ)e−2(1+θ)x; x, θ > 0.

Similarly, the marginal pdf of Z2 and the conditional pdf of Y given that Z2 = θ are

gZ2(y) = e−y, y > 0 and gY |Z2=θ(x) = (1 + θ)e−(1+θ)x; x, θ > 0.

It is clear that Z1 6lr Z2. Now the sf of Xθ is e−2(1+θ)x. Then the reversed hazard rate of

Xθ

2(1 + θ)e−2(1+θ)x

1− e−2(1+θ)x
=

2(1 + θ)

e2(1+θ)x − 1
, is decreasing in x.

Thus, Xθ is DRHR, which in turn gives that Xθ is IVIT. Now,

fX|Z1=θ1(x)

fX|Z1=θ2(x)
=

2(1 + θ1)e−2(1+θ1)x

2(1 + θ2)e−2(1+θ2)x

=
1 + θ1

1 + θ2

e2(θ2−θ1)x

is increasing in x, so Xθ2 6lr Xθ1 for all 0 < θ1 6 θ2, or equivalently, Xθ2 6vit Xθ1 for

all 0 < θ1 6 θ2. Further,

fX|Z1=θ(x)

gY |Z2=θ(x)
=

2e−2(1+θ)x

e−(1+θ)x
is dcreasing in x.

Hence, Xθ 6lr Y θ, which implies that Xθ 6vit Y θ. Now,

∫ θ−x

0

∫ t

0

Gθ(u)dudt =

∫ θ−x

0

∫ t

0

[1− e−u(1+θ)]dudt

=

∫ θ−x

0

[
u+

e−u(1+θ)

1 + θ

]t
0

dt

=

∫ θ−x

0

[
t+

e−t(1+θ)

1 + θ
− 1

1 + θ

]
dt

=

[
t2

2
− e−t(1+θ)

(1 + θ)2
− t

1 + θ

]θ−x
0

=
1

(1 + θ)2
+

(θ − x)2

2
− θ − x

1 + θ
− e−(θ−x)(1+θ)

(1 + θ)2
.
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Again, ∫ θ−x

0

∫ t

0

Fθ(u)dudt =

∫ θ−x

0

∫ t

0

[1− e−2u(1+θ)]dudt

=

∫ θ−x

0

[
u+

e−2u(1+θ)

2(1 + θ)

]t
0

dt

=

∫ θ−x

0

[
t+

e−2t(1+θ)

2(1 + θ)
− 1

2(1 + θ)

]
dt

=

[
t2

2
− e−2t(1+θ)

4(1 + θ)2
− t

2(1 + θ)

]θ−x
0

=
1

4(1 + θ)2
+

(θ − x)2

2
− θ − x

2(1 + θ)
− e−2(θ−x)(1+θ)

4(1 + θ)2
.

Moreover,∫ θ−x
0

∫ t
0
Gθ(u)dudt∫ θ−x

0

∫ t
0
Fθ(u)dudt

= 2
2 + (θ − x)2(1 + θ)2 − 2(θ − x)(1 + θ)− 2e−(θ−x)(1+θ)

1 + 2(θ − x)2(1 + θ)2 − 2(θ − x)(1 + θ)− e−2(θ−x)(1+θ)
,

which is increasing in θ. Therefore, all the conditions of Theorem 4.3.7 are satisfied.

Hence, from Theorem 4.3.7 we have X(Z1) 6vrl Y(Z2).

The following theorem provides sufficient conditions for which X(Z1) and Y(Z2) are

ordered under vrl order when hazard rate or reversed hazard rate order holds between Z1

and Z2.

Theorem 4.3.8. Suppose conditions (i)-(iii) of Theorem 4.3.7 hold. If either of the

following assumptions are fulfilled:

(i) Z1 6hr Z2 and
∫ θ−x

0

∫ t
0
Gθ(u)dudt is increasing in θ ∈ (x,∞);

(ii) Z1 6rh Z2 and
∫ θ−x

0

∫ t
0
Fθ(u)dudt is decreasing in θ ∈ (x,∞)

then X(Z1) 6V RL Y(Z2).

Proof: Form conditions (ii) and (iii) of Theorem 4.3.7 it follows that∫ θ−x
0

∫ t
0
Gθ(u)dudt∫ θ−x

0

∫ t
0
Fθ(u)dudt

is increasing in x ∈ (0, θ),
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and ∫ θ−x
0

∫ t
0
Gθ(u)dudt∫ θ−x

0

∫ t
0
Fθ(u)dudt

is increasing in θ ∈ (x,∞).

(i) From condition (i) of Theorem 4.3.7 it follows that∫ θ−x

0

∫ t

0

Gθ(u)dudt is TP2 in (x, θ) ∈ (0,∞)× (0,∞).

Also, we have
∫ θ−x

0

∫ t
0
Gθ(u)dudt is increasing in θ ∈ (x,∞) and Z1 6hr Z2, so from

Lemma 4.2.6 we obtain∫∞
0

(∫ θ−x
0

∫ t
0
Gθ(u)dudt

)
h2(θ)dθ∫∞

0

(∫ θ−x
0

∫ t
0
Fθ(u)dudt

)
h1(θ)dθ

is increasing in x ∈ (0,∞).

Hence, X(Z1) 6vrl Y(Z2).

(ii) From condition (i) of Theorem 4.3.7 it follows that∫ θ−x

0

∫ t

0

Fθ(u)dudt is TP2 in (x, θ) ∈ (0,∞)× (0,∞).

Also, from given conditions we have
∫ θ−x

0

∫ t
0
Fθ(u)dudt is decreasing in θ ∈ (x,∞) and

Z1 6rh Z2, so from Lemma 4.2.7 we obtain∫∞
0

(∫ θ−x
0

∫ t
0
Gθ(u)dudt

)
h2(θ)dθ∫∞

0

(∫ θ−x
0

∫ t
0
Fθ(u)dudt

)
h1(θ)dθ

is increasing in x ∈ (0,∞).

Hence, X(Z1) 6vrl Y(Z2).

4.4 Ageing Properties

In this section we study various ageing properties of RLRT/ITRT based on DVRL (IVRL)

and IVIT classes. We investigate under what conditions the ageing property of Xθ is

preserved for XZ when X and Z are not necessarily independent. In the following theorem

we show that DVRL class is preserved for RLRT under certain conditions.

Theorem 4.4.1. Let (X,Z) be jointly distributed nonnegative random variables (not nec-

essarily independent). If
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• Xθ has IVRL (DVRL) for all θ > 0;

• Xθ1 6vrl (>vrl)Xθ2, for all θ1 6 θ2

• and, for fixed x > 0 and y > 0,
∫∞
x+y

∫∞
t F θ(u+θ)dudt∫∞

x

∫∞
t F θ(u+θ)dudt

is increasing in θ ∈ (x,∞),

then XZ has IVRL (DVRL).

Proof: Since Xθ has IVRL (DVRL), so for every θ > 0,∫∞
x+y

∫∞
t
F θ(u+ θ)dudt∫∞

x

∫∞
t
F θ(u+ θ)dudt

is increasing (decreasing) in x ∈ (0,∞).

Again, ∫ ∞
x

∫ ∞
t

F θ(u+ θ)dudt is TP2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞)

since Xθ has IVRL (DVRL) and Xθ1 6vrl (>vrl)Xθ2 , for all θ1 6 θ2. Also, for fixed x > 0

and y > 0, ∫∞
x+y

∫∞
t
F θ(u+ θ)dudt∫∞

x

∫∞
t
F θ(u+ θ)dudt

is increasing in θ ∈ (x,∞).

So, from Lemma 4.2.3(i), it follows that∫∞
0

(∫∞
x+y

∫∞
t
F θ(u+ θ)dudt

)
h1(θ)dθ∫∞

0

(∫∞
x

∫∞
t
F θ(u+ θ)dudt

)
h1(θ)dθ

is increasing (decreasing) in x ∈ (0,∞).

Therefore,∫∞
x+y

∫∞
t

∫∞
0
F θ(u+ θ)h1(θ)dθdudt∫∞

x

∫∞
t

∫∞
0
F θ(u+ θ)h1(θ)dθdudt

is increasing (decreasing) in x ∈ (0,∞).

Hence, XZ has IVRL (DVRL). �

In the following theorems we assume that Xθ d
= Y θ where we take Z1 = Zz and Z2 = Z

such that Zz = (Z−z|Z > z) is the residual life at fixed time z. In Theorem 2.3.7, we have

investigated how the ageing properties of X and Z affect ageing characteristic of ITRT

under the assumption that X and Z are independently distributed. Below we consider

the situation when X and Z are not independently distributed.
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Theorem 4.4.2. Suppose X and Z are jointly distributed nonnegative random variables

(not necessarily independent). If Z is IFR, for every θ > 0, Xθ has IVIT, Xθ2 6vit Xθ1

for all 0 < θ1 6 θ2 and
∫ θ−x

0

∫ t
0
Fθ(u)dudt is increasing in θ ∈ (x,∞) for every fixed x > 0,

then X(Z) has DVRL.

Proof: According to Theorem 1.B.38 of Shaked and Shanthikumar (2007), Z is IFR if

and only if Zz 6hr Z for all z > 0. On using Theorem 4.3.2 we obtain X(Zz) 6vrl X(Z)

for all z > 0. Note that X(Zz) =st

[
X(Z)

]
z

for all z > 0. Thus,
[
X(Z)

]
z
6vrl X(Z) for all

z > 0. Now from Theorem 2.3.1, it follows immediately that X(Z) is of DVRL. �

We provide below an example to show that all the conditions of the above theorem

are satisfied.

Example 4.4.1. Suppose the joint pdf of (X,Z) is

f(x, y) =

 e−y

2
, 0 < x < y

e−x

2
, x > y.

Now the marginal pdf of Z and the conditional pdf of X given that Z = θ are

fZ(y) =


e−y(y+1)

2
, y > 0

0, otherwise

and

fX|Z=θ(x) =

 1
θ+1

, 0 < x < θ

eθ−x

θ+1
, x > θ.

Thus, the survival function of Z is e−y(y + 2)/2, y > 0. Then the hazard rate of Z

is (y + 1)/(y + 2), which is increasing in y > 0. Hence Z is IFR. It can also be readily

seen from Example 4.3.2 that all the remaining conditions of Theorem 4.4.2 are satisfied.

Hence, from Theorem 4.4.2, X(Z) has DVRL.

In the following theorem we characterize the DVRL (IVIT) class based on ITRT.

Theorem 4.4.3. If Zz 6rh Z for all z > 0, Xθ has IVIT, Xθ2 6vit Xθ1 for all 0 < θ1 6 θ2

and
∫ θ−x

0

∫ t
0
Fθ(u)dudt is decreasing in θ ∈ (x,∞) for every fixed x > 0, then X(Z) has

DVRL. Conversely, if X(Z) has DVRL and Zz 6rh Z then Xθ has IVIT.
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Proof: Since Zz 6rh Z for all z > 0, Xθ has IVIT, Xθ2 6vit Xθ1 for all 0 < θ1 6 θ2 and∫ θ−x
0

∫ t
0
Fθ(u)dudt is decreasing in θ, so by Theorem 4.3.4, X(Zz) 6vrl X(Z) for all z > 0.

Or equivalently,
[
X(Z)

]
z
6vrl X(Z) for all z > 0. Now, from Theorem 2.3.1, it follows

immediately that X(Z) is of DVRL.

Conversely, if X(Z) has DVRL then
[
X(Z)

]
z
6vrl X(Z), which is equivalent to X(Zz) 6vrl

X(Z). Again, Zz 6rh Z, so from Theorem 4.3.4, it follows that Xθ has IVIT. �

To conclude, we consider the following ageing related result on RLRT.

Theorem 4.4.4. Let (X,Z) be jointly distributed nonnegative random variables (not

necessarily independent). If XZ has DVRL (IVRL) and Zz 6rh Z then Xθ has IVRL

(DVRL).

Proof: Since XZ has DVRL (IVRL) so [XZ ]z 6vrl (>vrl)XZ , which is equivalent to

XZz 6vrl (>vrl)XZ . Again, Zz 6rh Z, so from Theorem 4.3.3, we get Xθ has IVRL

(DVRL).

4.5 On Some Applications and Examples

In many situations, stochastic comparisons of RLRTs and ITRTs, defined in Section 4.3,

may be useful. To get a feel of the same, in this section, we present two such scenarios

(one is for RLRT and another is for ITRT) where comparison of RLRTs and ITRTs may

be of use. For some more scenarios on stochastic comparisons of RLRT and an application

of ITRT for the study of robustness of a system one may refer to Misra and Naqvi (2018a,

2017). Although Theorem 4.3.5 is apparently interesting just from a theoretical point of

view, we apply it to show that remaining lifetimes of two different model alarm trip are

stochastically comparable.

Example 4.5.1. Consider two different models (say, Model A and Model B) of a small

size EMU (electric multiple unit) train, each having two engines, where the failure of one

engine usually does not prevent the train from continuing on its journey. Let Model A
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have engines e1 and e2 with random lifetimes X and Z1 and Model B have engines e3 and

e4 with random lifetimes Y and Z2, respectively. Now the remaining life of the Model A

(Model B) EMU train after failure of engine e2 (e4) is XZ1 (YZ2). In this scenario, it

would be of interest to compare the residual lives XZ1 of Model A and YZ2 of Model B

under vrl order to account for the dispersion of XZ1 and YZ2.

Example 4.5.2. In clinical trials, it often happens that the time at which a person goes

to clinic for examination of a disease is actually different from the time he got infected.

Let X and Θ be the respective times of infection and onset of a disease. Then X(Θ)

represents the ‘incubation period’ of the disease. Consider a hospital where patients from

two different localities (say, Locality A and Locality B) arrive for the treatment of the

disease. When a patient arrives at the hospital the time elapsed since infection (or initial

time of infection) of the disease, which is unknown, varies between patients and also

between two localities. Suppose that the inception of infection of the disease in a typical

patient arriving at the hospital from Locality A (Locality B) is described by a random

variable X (Y ) and the corresponding time of beginning of the disease by Z1 (Z2). Due

to inter-individual variation, the specific incubation period of a disease is unknown and

always expressed as a range. Therefore, it may be of interest to compare X(Z1) and Y(Z2)

for Locality A and Locality B, respectively in terms of variability.

In the following example, we provide an application of Theorem 4.3.5.

Example 4.5.3. Consider a company that sells alarm trip 1-out-of-2 voting of two dif-

ferent models (say, Model A and Model B), where Model A is made up of components c1

and c2 with random lifetimes X and Z1 and Model B is made up of components c3 and

c4 with random lifetimes Y and Z2, respectively. Now the remaining life of the Model

A (Model B) after failure of component c2 (c4) is XZ1 (YZ2), without replacing the failed

component. Suppose the joint pdfs of (X,Z1) and (Y, Z2) are

f(x, y) = 2(y + 1)e−x−2y−xy and g(x, y) =
1

y
e−(x

y
+y); x, y > 0.

Needless to say that in mean residual life order we compare the means of their associated

residual lifetimes. However, the means sometimes may be equal and therefore are often not
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very informative. In many instances in applications one has more detailed information,

for the purpose of comparison of two residual lives that have equal means, one is usually

interested in the comparison of the dispersion of these random variables. As a result,

stochastic comparison based on variance residual life order have been investigated in the

literature. Now the marginal pdf of Z1 and the conditional pdf of X given that Z1 = θ are

fZ1(y) = 2e−2y, y > 0 and fX|Z1=θ(x) = (1 + θ)e−(1+θ)x; x, θ > 0.

Again, the marginal pdf of Z2 and the conditional pdf of Y given that Z2 = θ are

gZ2(y) = e−y, y > 0 and gY |Z2=θ(x) =
1

θ
e−

x
θ ; x, θ > 0.

Here Z1 6lr Z2 as fZ1(y)/gZ2(y) = 1
1+y

is decreasing in y. Since,

GX|Z1=θ(x)

GX|Z2=θ(x)
= e

−
(
θ2−θ1
θ1θ2

)
x

is decreasing in x, so Y θ1 6hr Y θ2, which in turn implies that Y θ1 6vrl Y θ2 for all

0 < θ1 6 θ2. It can be verified that Y θ has IVRL for every θ > 0. On noting that

fX|Z1=θ(x)

gY |Z2=θ(x)
= θ(1 + θ)e−(1+θ− 1

θ )x decreasing in x

we have Xθ 6lr Y θ, which in turn implies that Xθ 6vrl Y θ. Now,∫ ∞
x+θ

∫ ∞
t

GY |Z2=θ(u)dudt =

∫ ∞
x+θ

∫ ∞
t

e−
u
θ dudt

=

∫ ∞
x+θ

θ[−e−
u
θ ]∞t dt

=

∫ ∞
x+θ

θe−
t
θ dt

= θ2e−(x+θθ ).

Also, from Example 4.3.3∫ ∞
x+θ

∫ ∞
t

F Y |Z1=θ(u)dudt =
e−(x+θ)(1+θ)

(1 + θ)2
.

So, ∫∞
x+θ

∫∞
t
Gθ(u)dudt∫∞

x+θ

∫∞
t
F θ(u)dudt

= θ2(1 + θ)2e(1+θ− 1
θ )(x+θ),
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which is increasing in θ. Thus, conditions (i)-(iii) of Theorem 4.3.5 are satisfied. Hence,

from Theorem 4.3.5, we obtain XZ1 6vrl YZ2. Thus the variance of the remaining lifetime

for Model A alarm trip is less than the variance of the remaining lifetime for Model B

alarm trip, which shows that the uncertainty is smaller for the case of Model A alarm trip

than that of Model B alarm trip. Therefore, if we are interested in avoiding uncertainty

or variability, we should choose the Model A alarm trip.





Chapter 5

Generalized Orderings and Ageing

Classes for RLRT and ITRT
1

In this chapter, we enhance the study of ageing classes and stochastic comparisons of resid-

ual life at random time (RLRT) and inactivity time at random time (ITRT). We provide

some new preservation properties of generalized ageing classes (viz. s-IFR, s-DFR) and

generalized stochastic ordering (s-FR) for RLRT and ITRT, where s is a nonnegative

integer. An application in reliability theory is also investigated. The results strengthen

some results available in the literature and are expected to be useful in reliability theory,

forensic science, econometrics, queueing theory and actuarial science.

5.1 Introduction

Let X be an absolutely continuous nonnegative random variable representing the lifetime

of a unit/system. The residual life and the inactivity time of X at a fixed time t > 0

are defined as the random variables Xt = (X − t|X > t) and X(t) = (t − X|X < t). If

we replace t with a random variable Y , independent of X, then XY = (X − Y |X > Y )

denotes the residual life of X and X(Y ) = (Y − X|X < Y ) denotes the inactivity time

of X at a random time Y . The RLRT is one of the important notions in reliability and

1Part of the work done in this chapter has been published in Metrika, 2019, 82, 691-704.
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queuing theory (see Stoyan, 1983, for more details). For example, in the classical GI/G/1

queuing system, the idle period is a RLRT (see Marshall, 1968). ITRT is used in medical

science to describe the dormant season of a disease, i.e., the time between infection and

the beginning of a disease. Stochastic comparison results and ageing properties of RLRT

and ITRT have been investigated by Yue and Cao (2000), Li and Zuo (2004), Li and Xu

(2006), Misra et al. (2008), Cai and Zheng (2012), Dewan and Khaledi (2014) and Misra

and Naqvi (2017). For some discussions on variance residual life and variance inactivity

time one may refer to Gupta (2006), Mahdy (2012) and Kayid and Izadkhah (2016).

There is a proliferation of generalized partial orderings and generalized ageing classes

in the literature over the recent years. They are used in reliability, economics, queues,

inventory, actuarial science, applied probability and stochastic process contexts. Several

of these definitions gave rise to new ageing classes. Fagiuoli and Pellerey (1993) obtained

several preservation results on generalized orderings under Poisson shock models. Kass et

al. (1994) used generalized orderings in actuarial sciences. Denuit et al. (1998) used some

generalized orderings (s-convex order) in queues and insurance. Nanda et al. (1996a, b)

studied different properties of generalized orderings such as moments, closure under mix-

tures etc. Nanda (1997) used generalized orderings in minimal repair policy. Fagiuoli

and Pellerey (1994) gave a different type of classification of generalized ageing classes

in a unified way depending on the generalized orderings. Several results on generalized

orderings and generalized ageing classes with their implications were obtained by Hu et

al. (2001, 2004), Navarro and Hernandez (2004) and Belzunce et al. (2008). Recently,

Cai and Zheng (2009) characterized generalized ageing classes of inter-arrival times by

the excess lifetime of a renewal process.

In this chapter we focus on the study of generalized ageing classes (s-IFR, s-DFR) and

generalized stochastic ordering (s-FR) for RLRT and ITRT. First, we carry out stochastic

comparison of RLRT and ITRT under s-FR ordering in two sample problems having same

as well as different random ages or observed to fail at same/different random times. Later,

the preservation properties and some characterizations of s-DFR ageing class and its dual

are derived. Finally, an application in reliability theory is also investigated. From this

general discussion, many known results on RLRT/ITRT can be obtained as particular
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cases of our general results. To be more specific, we obtain some interesting results which

are generalizations of those by Yue and Cao (2000), Li and Zuo (2004), Misra et al. (2008)

and Dewan and Khaledi (2014).

For the random variable X, let fX(x), FX(x), FX(x), rX(x) = fX(x)/FX(x) and

r̃X(x) = fX(x)/FX(x) denote its density function, distribution function, survival func-

tion, hazard rate function and reversed hazard rate function, respectively. Let T 0(X, x) =

Φ0(X, x) = fX(x), Φ1(X, x) = FX(x), ∀x > 0, s ∈ N+ = N r {0} where N =

{0, 1, 2, 3, . . .},

Φs(X, x) =

∫ ∞
x

Φs−1(X, u)du, T s(X, x) =
Φs(X, x)

Φs(X, 0)
. (5.1.1)

Then

rs(X, x) =
T s−1(X, x)∫∞

x
T s−1(X, u)du

. (5.1.2)

Clearly, for s = 1, 2, r1(X, x) = rX(x) and r−1
2 (X, x) = E(Xx) are the hazard rate and the

mean residual life of X, respectively. Also, take X(1) = X and for k = 2, 3, . . . , let X(k)

be a random variable with survival function T k(X, x) and hazard rate function rk(X, x),

respectively. For t > 0, let (X(k))t = (X(k)−t|X(k) > t) and E(X(k))t = E(X(k)−t|X(k) >

t). From (5.1.2), we have

T k(X, x) = exp

(
−
∫ x

0

rk(X, u)du

)
, r−1

k+1(X, t) = E[X(k)]t. (5.1.3)

In order to make the presentation self-contained we restate below the definition of

some stochastic orders and ageing classes that are closely related to our main theme.

For a comprehensive discussion on them, one may refer to Barlow and Proschan (1981),

Müller and Stoyan (2002), Shaked and Shanthikumar (2007), and Belzunce et al. (2015),

among others.

Definition 5.1.1. Let X and Y be two nonnegative random variables. X is said to be

smaller than Y in

(a) likelihood ratio order (written as X 6lr Y ), if fX(x)/fY (x) is decreasing in x;

(b) hazard rate order (written as X 6hr Y ), if rX(x) ≥ rY (x) for all x > 0;
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(c) reverse hazard rate order (written as X 6rh Y ), if r̃X(x) 6 r̃Y (x) for all x > 0;

(d) mean residual life order (written as X 6mrl Y ), if E(Xt) 6 E(Yt) for all t > 0;

(e) variance residual life order (written as X 6vrl Y ) if∫∞
t

∫∞
x
F (u)dudx

F (t)
6

∫∞
t

∫∞
x
G(u)dudx

G(t)
for all t > 0;

(f) s-FR order (written as X 6s−FR Y )⇔ rs(X, x) > rs(Y, x) for all x > 0 and s ∈ N,

or equivalently, if

T s(X, x)

T s(Y, x)
is decreasing in x > 0 for all s ∈ N.

Definition 5.1.2. X is said to be

(a) increasing (resp. decreasing) likelihood ratio (ILR (resp. DLR)) if for any a > 0,

f(t+ a)/f(t) is decreasing (resp. increasing) in t > 0;

(b) increasing (resp. decreasing) failure rate (IFR (resp. DFR)) if rX(x) is increasing

(decreasing) in x > 0;

(c) decreasing reverse hazard rate (DRHR) if r̃X(x) is decreasing in x > 0;

(d) decreasing (resp. increasing) mean residual life (DMRL (resp. IMRL)) if E(Xt) is

decreasing (increasing) in t > 0;

(e) decreasing (resp. increasing) variance residual life (DVRL (resp. IVRL)) if∫∞
t

∫∞
x
F (u)dudx∫∞

t
F (t)

is decreasing (increasing) in t > 0;

(f) s-IFR (s-DFR) if

Φs(X, x+ t)

Φs(X, x)
is decreasing (increasing) in x for all x, t > 0 and s ∈ N,

or equivalently, if rs(X, x) is increasing (decreasing) in x > 0.

It is easy to see that
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• X 60−FR Y ⇔ X 6lr Y , X 61−FR Y ⇔ X 6hr Y , X 62−FR Y ⇔ X 6mrl Y ,

X 63−FR Y ⇔ X 6vrl Y .

• X is 0-IFR (0-DFR) ⇔ X is ILR (DLR), X is 1-IFR (1-DFR) ⇔ X is IFR (DFR),

X is 2-IFR (2-DFR) ⇔ X is DMRL (IMRL), X is 3-IFR (3-DFR) ⇔ X is DVRL

(IVRL).

The following implications are well known:

• X is ILR (DLR)⇒ X is IFR (DFR)⇒ X is DMRL (IMRL)⇒ X is DVRL (IVRL).

• X 6lr Y ⇒ X 6hr Y ⇒ X 6mrl Y ⇒ X 6vrl Y .

By (5.1.1), (5.1.3) and simple calculation, one can prove the following.

Proposition 5.1.1. Suppose s ∈ N+, then

(a) X is s-IFR (s-DFR) ⇒ X(2) is s-IFR (s-DFR) ⇔ X is (s+ 1)-IFR ((s+ 1)-DFR).

(b) X is s-IFR (s-DFR)⇔ X(k) is (s−k+1)-IFR ((s−k+1)-DFR) for k = 1, 2, 3, . . . , s.

Specially, X is s-IFR (s-DFR) ⇔ X(s) is IFR (DFR).

(c) X 6(s+2)−FR Y ⇔ X(s+2) 6hr Y (s+2) ⇔ X(s+1) 6mrl Y (s+1) ⇔ X(s) 6vrl Y (s).

(d) X 6s−FR Y ⇒ X 6(s+1)−FR Y .

(e) X is s-IFR (s-DFR) ⇔ Xt 6 (>)s−FRX, for all t > 0.

5.2 Results on RLRT and ITRT

In this section, under s-FR ordering, we deal with stochastic comparisons of RLRT and

ITRT of two systems having same as well as different random ages or observed to fail

at the same/different random times. First we derive a result on stochastic comparison

of (X1)Y and (X2)Y , the residual lifetime of X1 and X2 at a random time Y , and then

extend it for (X1)Y1 and (X2)Y2 . Stochastic comparisons between X(Z) and Y(Z), the

inactivity time of X and Y at a random time Z, are also focused on. Later we discuss the

preservation properties and some characterizations of s-DFR and s-IFR ageing classes by
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means of RLRT. Further, it is shown that ILR (DLR) ageing class is preserved for RLRT

and ITRT. In view of XY = Y(X) for continuous distributions, each result for either RLRT

or ITRT can be translated into a result for the other by exchanging the roles of X and

Y .

Let X and Y be two nonnegative and mutually independent random variables, and

let U = XY be the residual life of X at a random time Y . Then

Φ1(U, t) = FU(t) =

∫∞
0
FX(t+ y)dFY (y)∫∞

0
FX(y)dFY (y)

and

fU(t) = − d

dt
FU(t) =

∫∞
0
fX(t+ y)dFY (y)∫∞

0
FX(y)dFY (y)

, ∀t > 0.

It is easy to verify by induction that ∀t > 0 and k = 1, 2, 3 . . .,

Φk(U, t) =

∫∞
0

Φk(X, t+ y)dFY (y)∫∞
0
FX(y)dFY (y)

.

The following lemma is due to Dewan and Khaledi (2014) which will be used to

prove the next theorem. First recall from Karlin (1968) that a nonnegative function

ψ : X× Y → R, the set of real numbers, is said to be TP2 (totally positive of order 2) if

ψ(x, y)ψ(x∗, y∗) > ψ(x, y∗)ψ(x∗, y) for all x, x∗ ∈ X and y, y∗ ∈ Y such that x 6 x∗ and

y 6 y∗, where X and Y are subsets of the real line.

Lemma 5.2.1. Let hi(x, y), i = 1, 2, be a nonnegative real valued function on R × X,

where X is a subset of real line. If

(i) h2(x, y)/h1(x, y) is increasing in x and y and

(ii) if either h1(x, y) or h2(x, y) is TP2 in (x, y),

then

si(x) =

∫
X
hi(x, y)l(y)dy

is TP2 in (i, x), where l is a continuous function with
∫
X l(y)dy <∞.

Theorem 5.2.1. Let Xi, i = 1, 2 be two nonnegative random variables having density

function fXi, distribution function FXi, survival function FXi. Let Y be a random variable

independent of X1 and X2 with density function fY and distribution function FY . Suppose

that s ∈ N+. If X1 6s−FR X2 and either X1 or X2 is s-DFR then (X1)Y 6s−FR (X2)Y .
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Proof: Xi is s-DFR if and only if

T s(Xi, x+ y) is TP2 in (x, y) ∈ (0,∞)× (0,∞).

That is,

Φs(Xi, x+ y) is TP2 in (x, y) ∈ (0,∞)× (0,∞).

On the other hand, X1 6s−FR X2 if and only if

T s(X2, u)

T s(X1, u)
is increasing in u > 0,

which in turn implies that

T s(X2, x+ y)

T s(X1, x+ y)
is increasing in x > 0 as well as y > 0.

Or equivalently,

Φs(X2, x+ y)

Φs(X1, x+ y)
is increasing in x > 0 as well as y > 0.

Hence, the conditions of Lemma 5.2.1 are satisfied by replacing the function l(y) with

fY (y) and hi(x, y) with Φs(Xi, x+ y), i = 1, 2. Therefore,

Φs((Xi)Y , x) is TP2 in (i, x) ∈ {1, 2} × (0,∞).

This gives that

T s((Xi)Y , x) is TP2 in (i, x) ∈ {1, 2} × (0,∞),

which is equivalent to

T s((X1)Y , x)

T s((X2)Y , x)
is decreasing in x > 0.

Therefore, (X1)Y 6s−FR (X2)Y . �

The above theorem is somewhat related to the following theorem of Hu et al. (2001)

on preservation of s-FR ordering for Xt, the residual life of X at a fixed time t > 0, to

include situation where t is a random variable independent of X.

Theorem 5.2.2. For s ∈ N, X 6s−FR Y ⇐⇒ Xt 6s−FR Yt,∀t > 0.
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Taking s = 1, 2 in the Theorem 5.2.1, the following results of Dewan and Khaledi

(2014) are obtained easily.

Corollary 5.2.1. Let X1, X2 and Y be three nonnegative random variables and Y be

independent of X1 and X2. If

• X1 6hr X2 and either X1 or X2 is DFR then (X1)Y 6hr (X2)Y ;

• X1 6mrl X2 and either X1 or X2 is IMRL then (X1)Y 6mrl (X2)Y .

Taking s = 3 in Theorem 5.2.1, the following result is obtained.

Corollary 5.2.2. If X1 6vrl X2 and either X1 or X2 is IVRL then (X1)Y 6vrl (X2)Y .

Now we consider the stochastic comparisons of RLRT of two system having different

random ages. Now we recall the following lemma from Chapter 2 which will be used to

prove the next theorem.

Lemma 5.2.2. Let hi(x, y), i = 1, 2, be a nonnegative real valued function on R × X,

where X is a subset of real line. If

(i) h2(x, y)/h1(x, y) is increasing in x and y,

(ii) l2(y)/l1(y) is increasing in y and

(iii) if either h1(x, y) or h2(x, y) is TP2 in (x, y),

then

si(x) =

∫
X
hi(x, y)li(y)dy

is TP2 in (i, x), where li is a continuous function with
∫
X li(y)dy <∞.

Theorem 5.2.3. Let Xi, i = 1, 2 be two nonnegative random variables having density

function fXi, distribution function FXi, survival function FXi. Let Yi, i = 1, 2 be another

two nonnegative random variables independent of X1 and X2, respectively with density

function fYi and distribution function FYi. Suppose Y1 6lr Y2 and the following assump-

tions hold:

• X1 6s−FR X2;

• X1 or X2 is s-DFR.
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Then, (X1)Y1 6s−FR (X2)Y2, for all s ∈ N+.

Proof: Xi is s-DFR if and only if

T s(Xi, x+ y) is TP2 in (x, y) ∈ (0,∞)× (0,∞).

Or equivalently,

Φs(Xi, x+ y) is TP2 in (x, y) ∈ (0,∞)× (0,∞).

On the other hand, X1 6s−FR X2 if and only if

T s(X2, u)

T s(X1, u)
is increasing in u > 0,

which in turn implies that

T s(X2, x+ y)

T s(X1, x+ y)
is increasing in x > 0 as well as y > 0.

That is,
Φs(X2, x+ y)

Φs(X1, x+ y)
is increasing in x > 0 as well as y > 0.

Again, Y1 6lr Y2 if and only if

fY2(u)

fY1(u)
is increasing in u > 0.

Hence, the conditions of Lemma 5.2.2 are satisfied by replacing the function li(y) with

fYi(y) and hi(x, y) with Φs(Xi, x+ y), i = 1, 2. Therefore,

Φs((Xi)Yi , x) is TP2 in (i, x) ∈ {1, 2} × (0,∞),

which implies that

T s((Xi)Yi , x) is TP2 in (i, x) ∈ {1, 2} × (0,∞).

Or equivalently,
T s((X1)Y1 , x)

T s((X2)Y2 , x)
is decreasing in x > 0.

Hence, the result follows. �

Taking s = 1, 2, 3 in the above theorem, the following results of Chapter 2 are obtained

easily on using XY = Y(X).
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Corollary 5.2.3. Let X1, Y1 and X2, Y2 be independent nonnegative random variables. If

• Y1 6lr Y2, X1 6hr X2 and either X1 or X2 is DFR then (X1)Y1 6hr (X2)Y2;

• Y1 6lr Y2, X1 6mrl X2 and either X1 or X2 is IMRL then (X1)Y1 6mrl (X2)Y2;

• Y1 6lr Y2, X1 6vrl X2 and either X1 or X2 is IVRL then (X1)Y1 6vrl (X2)Y2.

In continuation with Theorem 5.2.1 we state the following two theorems on stochastic

comparison of ITRT of two different systems observed to fail at the same random time.

The proof of the following result is immediate from Nanda and Kundu (2009) and hence

omitted.

Theorem 5.2.4. Let X and Y be two nonnegative random variables representing the

lifetimes of two systems failed at random time Z. Let Z be independent of X and Y . If

X 6rh Y and Z is s-IFR (s-DFR) then X(Z) >s−FR (6s−FR)Y(Z) for all s ∈ N+.

For s = 1, 2 we obtain the following results of Chapter 2.

Corollary 5.2.4. • If X 6rh Y and Z is DFR (IFR), then X(Z) 6hr (>hr)Y(Z).

• If X 6rh Y and Z is IMRL (DMRL), then X(Z) 6mrl (>mrl)Y(Z).

Consider the following lemma which will be used to prove the upcoming theorem.

Lemma 5.2.3. (Joag-Dev et al., 1995). Let ψ(x, y) be any TP2 function (not necessarily

a reliability function) in x ∈ X and y ∈ Y and Fi(x) be a distribution function for each

i ∈ {1, 2}. Denote

Hi(y) =

∫
X
ψ(x, y)dFi(x).

If F i(x) is TP2 in i ∈ {1, 2} and x ∈ X and if ψ(x, y) is increasing in x ∈ X for each

y ∈ Y, then Hi(y) is TP2 in y ∈ Y and i ∈ {1, 2}.

The following theorem gives another stochastic comparison of ITRT. Here we provide

some sufficient conditions under which two ITRTs are stochastically comparable in (s+1)-

FR sense.
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Theorem 5.2.5. Suppose that Z is independent of X and Y . If X 6hr Y and Z is of

(s+ 1)-DFR then X(Z) 6(s+1)−FR Y(Z), for all s ∈ N+.

Proof: Denote by F1, F2 and H the distribution functions of X, Y and Z, respectively.

Since Z is of (s+ 1)-DFR, we have for all y > 0 and M> 0,∫∞
y+MΦs(Z, u)du

Φs(Z, y+ M)
>

∫∞
y

Φs(Z, u)du

Φs(Z, y)
.

Now,

d

dy

(∫∞
y+MΦs(Z, u)du∫∞
y

Φs(Z, u)du

)
= − Φs(Z, y+ M)∫∞

y
Φs(Z, u)du

+
Φs(Z, y)(

∫∞
y+MΦs(Z, u)du)

(
∫∞
y

Φs(Z, u)du)2

> 0.

Hence, ∫∞
y+MΦs(Z, u)du∫∞
y

Φs(Z, u)du
is increasing in y > 0.

Thus, ∫∞
y2+t2

Φs(Z, u)du∫∞
y1+t2

Φs(Z, u)du
>

∫∞
y2+t1

Φs(Z, u)du∫∞
y1+t1

Φs(Z, u)du
, (5.2.1)

for all 0 < t1 6 t2 < y1 6 y2. Denote

ψ(y, t) =


∫∞
y+t

Φs(Z, u)du, y > 0

0, y 6 0.

Then (5.2.1) gives that

ψ(y1, t1)ψ(y2, t2) > ψ(y1, t2)ψ(y2, t1), (5.2.2)

for all (t1, t2, y1, y2) ∈ S = {(t1, t2, y1, y2) : 0 < t1 6 t2 < y1 6 y2}. It can be verified that

(5.2.2) is also valid for those (t1, t2, y1, y2) ∈ {(t1, t2, y1, y2) : 0 < t1 6 t2; 0 < y1 6 y2}−S.

Thus ψ(y, t) is TP2 in (y, t) ∈ (0,∞)× (0,∞). Let

Hi(t) =

∫∞
0
ψ(y, t)dFi(y)∫∞

0
Φs(Z, y)dFi(y)

.
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Now X 6hr Y gives that F i(x) is TP2 in (i, x) ∈ {1, 2}×(0,∞) and ψ(y, t) is increasing in

y for each fixed t. From Lemma 5.2.3 it follows that Hi(t) is TP2 in (i, t) ∈ {1, 2}×(0,∞).

Then

H2(t)

H1(t)
=

∫∞
0
ψ(y, t)dF2(y)∫∞

0
ψ(y, t)dF1(y)

×
∫∞

0
Φs(Z, y)dF1(y)∫∞

0
Φs(Z, y)dF2(y)

=

∫∞
0

∫∞
y+t

Φs(Z, u)dudF2(y)∫∞
0

∫∞
y+t

Φs(Z, u)dudF1(y)
×
∫∞

0
Φs(Z, y)dF1(y)∫∞

0
Φs(Z, y)dF2(y)

=

∫∞
0

∫∞
t

Φs(Z, y + u)dudF2(y)∫∞
0

∫∞
t

Φs(Z, y + u)dudF1(y)
×
∫∞

0
Φs(Z, y)dF1(y)∫∞

0
Φs(Z, y)dF2(y)

=

∫∞
t

∫∞
0

Φs(Z, y + u)dF2(y)du∫∞
t

∫∞
0

Φs(Z, y + u)dF1(y)du
×
∫∞

0
Φs(Z, y)dF1(y)∫∞

0
Φs(Z, y)dF2(y)

=

∫∞
t

Φs(Y(Z), u)du∫∞
t

Φs(X(Z), u)du
,

is increasing in t > 0. Hence the result follows. �

Taking s = 1 in Theorem 5.2.5, we get the following result.

Corollary 5.2.5. If Z is IMRL and X 6hr Y then X(Z) 6mrl Y(Z).

Taking s = 2 in Theorem 5.2.5, we obtain Theorem 2.3.4.

Corollary 5.2.6. If Z is IVRL and X 6hr Y then X(Z) 6vrl Y(Z).

The following theorem is from Cai and Zheng (2012).

Theorem 5.2.6. Suppose that s ∈ N+. Let X and Y be two independent nonnegative

random variables. If Y is DRHR and X is s-IFR (s-DFR) then XY is s-IFR (s-DFR).

The following theorem is due to Nanda and Kundu (2009).

Theorem 5.2.7. Let X and Y be two independent nonnegative random variables and Y

be DRHR. Then X is s-IFR if and only if XY is s-IFR.

Now we discuss some new properties of s-DFR ageing class on the RLRT. The results

are interesting in the sense that they give some existing results with less sufficient condi-

tions. First we study the preservation properties of s-DFR class for RLRT. In Theorem
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5.2.6 it has been shown that s-IFR (s-DFR) class is preserved for XY provided Y has

DRHR. The same result for s-IFR class was obtained in Theorem 5.2.7. The following

theorem strengthens Theorem 5.2.6 for s-DFR class in the sense that the DRHR property

on Y has been relaxed here. A natural question, therefore, may arise, whether the DRHR

property on Y for s-IFR class can be relaxed. We address this question in Example 5.2.2.

Theorem 5.2.8. Suppose that s ∈ N+. Let X and Y be two independent nonnegative

random variables. If X is s-DFR then XY is s-DFR.

Proof: According to Proposition 5.1.1(e), X is s-DFR if and only if Xt 6s−FR X for all

t > 0. Hence, by Theorem 5.2.1, (Xt)Y 6s−FR XY for all t > 0. In view of (XY )t
st
= (Xt)Y

for all t > 0, we obtain (XY )t 6s−FR XY for all t > 0. Now from Proposition 5.1.1(e), it

follows immediately that XY is of s-DFR. �

Taking s = 1, 2, 3 in the above theorem we get the following results.

Corollary 5.2.7. For two independent nonnegative random variables X and Y

• if X is DFR then XY is DFR;

• if X is IMRL then XY is IMRL;

• if X is IVRL then XY is IVRL.

Consider the following example in support of the above result.

Example 5.2.1. Let X and Y be two mutually independent random variables. Let

FX(x) = 1
1+x

, x > 0 be the survival function of X with rX(x) = 1
1+x

, x > 0. Clearly

X is DFR. Also, let

FY (x) =


x2

2
, 0 6 x < 1

x2+2
6
, 1 6 x < 2

1, x > 2

and

r̃Y (x) =


2
x
, 0 6 x < 1

2x
x2+2

, 1 6 x < 2

1, x > 2
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Figure 5.2.1: Plot of K(t) against t ∈ [0, 1] (Example 5.2.1)

be the distribution function and reversed hazard rate function of Y respectively. Since

2x
x2+2

is non decreasing in 1 6 x < 2 so Y is not DRHR. Then the survival function of

U = XY is given by

FU(x) =

∫∞
0
FX(x+ y)dFY (y)∫∞

0
FX(y)dFY (y)

=
1∫∞

0
FX(y)dFY (y)

[∫ 1

0

y

1 + x+ y
dy +

1

3

∫ 2

1

y

1 + x+ y
dy

]
=

1∫∞
0
FX(y)dFY (y)

[∫ 2+x

1+x

z − x− 1

z
dz +

1

3

∫ 3+x

2+x

z − x− 1

z
dz

]
=

1∫∞
0
FX(y)dFY (y)

[
[z − (x+ 1) ln z]2+x

1+x +
1

3
[z − (x+ 1) ln z]3+x

2+x

]
=

1∫∞
0
FX(y)dFY (y)

[
4

3
− (x+ 1) ln

(
2 + x

1 + x

)
− 1

3
(x+ 1) ln

(
3 + x

2 + x

)]
, x > 0.

Again,

rU(x) =

[
ln
(

2+x
1+x

)
+ 1

3
ln
(

3+x
2+x

)]
+ (x+ 1)

[
1

2+x
− 1

1+x
+ 1

3(3+x)
− 1

3(2+x)

]
4
3
− (x+ 1)

[
ln
(

2+x
1+x

)
+ 1

3
ln
(

3+x
2+x

)] , x > 0

which is decreasing in x as shown in Figure 5.2.1. Note that we use substitution t = e−x

while plotting the curve so that rU(x) = K(t), say. Hence XY is DFR.

In the following example we show that, for s-IFR class, the DRHR property on Y in

Theorem 5.2.6 cannot be relaxed.
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Example 5.2.2. Let X and Y be two mutually independent random variables. Let

FX(x) =


1, 0 6 x < 1

1− lnx, 1 6 x < e

0, x > e

be the survival function of X, and

FY (x) =


x2

2
, 0 6 x < 1

x2+2
6
, 1 6 x < 2

1, x > 2

be the distribution function of Y . Here X is IFR but Y is not DRHR. Then the survival

function of XY is given by

FU(x) =
1

k
×



∫ 1−x
0

ydy +
∫ 1

1−x[1− ln(x+ y)]ydy + 1
3

∫ 2

1
[1− ln(x+ y)]ydy, 0 6 x < e− 2∫ 1−x

0
ydy +

∫ 1

1−x[1− ln(x+ y)]ydy + 1
3

∫ e−x
1

[1− ln(x+ y)]ydy, e− 2 6 x < 1∫ 1

0
[1− ln(x+ y)]ydy + 1

3

∫ e−x
1

[1− ln(x+ y)]ydy, 1 6 x < e− 1∫ e−x
0

[1− ln(x+ y)]ydy, e− 1 6 x < e

0, x > e.

Or equivalently,

FU(x) =
1

k
×



1 + 1
2
(2x− x2 − 5

3
) ln(x+ 1)− 1

6
ln(x+ 2), 0 6 x < e− 2

1
2
(2x− x2 − 1

3
) ln(x+ 1) + 1

6
+ 1

6
(e− x)2[1− ln(x+ 1)], e− 2 6 x < 1

1
6
(e− x)2[1− ln(x+ 1)] + 1

6
+ 1

3
ln(x+ 1)− 1

2
lnx, 1 6 x < e− 1

1
2
(e− x)2(1− lnx), e− 1 6 x < e

0, x > e,

where k = 1− 1
6

ln 2. Again,

rU(x) =



−(1−x) ln(x+1)− [2x−x2−5/3]
2(x+1)

+ 1
6(x+2)

1+ 1
2

(2x−x2− 5
3

) ln(x+1)− 1
6

ln(x+2)
, 0 6 x < e− 2

−(1−x) ln(x+1)− [2x−x2−1/3]
x+1

+ 1
3

(e−x)[1−ln(x+1)]+
(e−x)2
6(x+1)

1
2

(2x−x2− 1
3

) ln(x+1)+ 1
6

+ 1
6

(e−x)2[1−ln(x+1)]
, e− 2 6 x < 1

1
3

(e−x)[1−ln(x+1)]+
(e−x)2
6(x+1)

− 1
3(x+1)

+ 1
2x

1
6

(e−x)2[1−ln(x+1)]+ 1
6

+ 1
3

ln(x+1)− 1
2

lnx
, 1 6 x < e− 1

(e−x)[1−lnx]+
(e−x)2

2x
1
2

(e−x)2(1−lnx)
, e− 1 6 x < e,

which is not increasing in x as shown in Figure 5.2.2. Hence XY is not IFR.
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Figure 5.2.2: Plot of rU(x) against x ∈ [.5, e− 2] (Example 5.2.2)

The following theorem is due to Nanda and Kundu (2009).

Theorem 5.2.9. Let X1 and X2 be two nonnegative random variables and Y be a DRHR

random variable which is independent of X1 and X2. Then X1 6s−FR X2 if and only if

(X1)Y 6s−FR (X2)Y .

In the following theorem we show that the converse of Theorem 5.2.6 for s-DFR class

is also true. The same result also holds for s-IFR class as shown in Theorem 5.2.7. It is

to be mentioned here that Counterexample 2.2 of Cai and Zheng (2012) in negation of

this claim is erroneous.

Theorem 5.2.10. Suppose that s ∈ N+. Let X and Y be two nonnegative independent

random variables. If Y is DRHR and XY is s-DFR then X is s-DFR.

Proof: Since XY is s-DFR, it follows that XY 6s−FR (XY )t for all t > 0. Or equivalently,

XY 6s−FR (Xt)Y for all t > 0. Since Y is DRHR and XY 6s−FR (Xt)Y for all t > 0 so

from Theorem 5.2.9 we obtain X 6s−FR Xt for all t > 0. Hence, it follows that X is

s-DFR. �

Taking s = 1, 2, 3 in the above theorem we get the following results.

Corollary 5.2.8. Let X and Y be two independent nonnegative random variables with Y

DRHR.
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• If XY is DFR then X is DFR.

• If XY is IMRL then X is IMRL.

• If XY is IVRL then X is IVRL.

Following theorem is from Cai and Zheng (2012).

Theorem 5.2.11. Suppose that Y is DRHR. If X is ILR (DLR) and has a decreasing

density function, then XY is ILR (DLR).

Following theorem is from Dewan and Khaledi (2014) which will be used to prove the

upcoming theorem.

Theorem 5.2.12. If X1 6lr X2 and either X1 or X2 is ILR, then (X1)Y 6lr (X2)Y .

The following result strengthens Theorem 5.2.11 for ILR class where an extra ageing

property on Y and monotonicity on the density of X have been imposed. Here we provide

a shorter proof of their theorem too.

Theorem 5.2.13. Let X and Y be two nonnegative independent random variables. If X

is ILR then XY is ILR.

Proof: According to Theorem 1.C.52 of Shaked and Shanthikumar (2007), X is ILR if

and only if Xt 6lr X for all t > 0. Then from Theorem 5.2.12 it follows that (Xt)Y 6lr XY

for all t > 0. This is equivalent to (XY )t 6lr XY for all t > 0. Hence, it follows that XY

is ILR. �

Example 5.2.3. Let X be a Gamma random variable with density function

fX(x;α, β) =
βα

Γ(α)
xα−1e−βx, x > 0; α, β > 0.

Here X is ILR. Therefore, from Theorem 5.2.13 it follows that for any nonnegative random

variable Y independent with X, XY is ILR.

The following example shows that in Theorem 5.2.11 the DRHR property on Y for

the dual class (DLR class) can also be relaxed.
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Figure 5.2.3: Plot of fU (x+t)
fU (t)

against t ∈ [0, 1] and x ∈ [0, 1] (Example 5.2.4)

Example 5.2.4. Let X and Y follow the distributions as given in Example 5.2.1. Then

X is DLR but Y is not DRHR. Now, fU (a+u1)
fU (u1)

6 fU (a+u2)
fU (u2)

for all u1 6 u2, since fU (a+u)
fU (u)

is increasing in u for all a > 0 as shown in Figure 5.2.3. It is to be mentioned here that

the substitutions t = e−u and x = e−a have been used while plotting the curve so that

fU (a+u)
fU (u)

= fU (x+t)
fU (t)

, say. Hence XY is DLR.

To conclude, we show that ILR (DLR) class is preserved for ITRT under certain

conditions. Before giving the theorem, let us state a lemma which is due to Shaked and

Shanthikumar (2007) and will be used in the sequel.

Lemma 5.2.4. Let X and Y be two independent random variables, let φ1 and φ2 be two

bivariate functions. Denote 4φ21(x, y) = φ2(x, y)− φ1(x, y). Then X 6hr Y if and only

if Eφ1(X, Y ) 6 Eφ2(X, Y ) for all φ1 and φ2 that satisfy the conditions:

(i) for each x, 4φ21(x, y) increases in y on {y > x}; and (ii) 4φ21(x, y) > −4φ21(y, x)

whenever x 6 y.

Theorem 5.2.14. Let X and Y be two independent nonnegative random variables. Sup-

pose that Y is DFR. If X is ILR (DLR) and has an increasing density function, then

X(Y ) is ILR (DLR).
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Proof: Recall that, for V = X(Y ),

fV (t) =

∫∞
0
fX(y − t)dFY (y)∫∞

0
FX(y)dFY (y)

.

Then, for a > 0,

fV (a+ t)

fV (t)
=

∫∞
0
fX(a+ y − t)dFY (y)∫∞

0
fX(y − t)dFY (y)

=

∫∞
0
fX(a+ v)dFY (v + t)∫∞

0
fX(v)dFY (v + t)

.

For the random variable Y , there exists two independent identical distributed random

variables Z1 and Z2 with the common distribution function FY . For 0 < t1 < t2, let

Yi = Zi− ti, i = 1, 2. Note that Y is DFR, so Y1 6hr Y2. Assume that Yi has distribution

function Gi, then we have

fV (a+ t1)

fV (t1)
=

∫∞
0
fX(a+ v)dG1(v)∫∞

0
fX(v)dG1(v)

=
EfX(a+ Y1)

EfX(Y1)
.

Let φ1(x, y) = fX(x)fX(a + y), φ2(x, y) = fX(a + x)fX(y) and ∆φ21(x, y) = φ2(x, y) −

φ1(x, y). Note that

∆φ21(x, y) = −∆φ21(y, x) = fX(x)fX(y)

(
fX(a+ x)

fX(x)
− fX(a+ y)

fX(y)

)
.

Since X is ILR and fX(x) is increasing, so ∆φ21(x, y) increasing in x for x 6 y. Again

Y is DFR, which gives that Y1 6hr Y2. Applying Lemma 5.2.4 we have Eφ1(Y1, Y2) 6

Eφ2(Y1, Y2), i.e., E[fX(Y1)fX(a + Y2)] 6 E[fX(Y2)fX(a + Y1)]. Note that X(Y ) is ILR if

and only if fV (a+t1)
fV (t1)

> fV (a+t2)
fV (t2)

for all t1 6 t2, by the equality and inequality above, the

assertion follows.

5.3 An Application in Reliability Theory

Here we provide an application of Theorem 5.2.3 (for s = 1) to compare the lifetimes of

two parallel systems. Let A and B be two parallel systems, where system A is made up of

components C1 and C2 with lifetimes X1 and Y1 and system B is made up of components
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C3 and C4 having lifetimes X2 and Y2, respectively. Let Yi, i = 1, 2 be a gamma random

variable with density function

fYi(y;αi, β) =
βα

Γ(αi)
yαi−1e−βy, y > 0; αi, β > 0.

Let X1 be a random variable with density function

fX1(x) =

(
1√
x

+ 1

)
exp(−2

√
x− x), x > 0

and X2 be another random variable with density function

fX2(x) =

(
1√
x

+
1

2

)
exp(−2

√
x− x

2
), x > 0.

Note that X1 and Y1 (X2 and Y2) are exchangeable random variables. In this framework,

it may be of interest to know the time for which the systems A and B operate without

load-sharing, i.e., it may be of interest to study the random variables

T1 = max{X1, Y1} −min{X1, Y1}

and T2 = max{X2, Y2} −min{X2, Y2}.

Using exchangeability of X1 and Y1, we have, for t > 0,

P (T1 > t) = 2P (X1 − Y1 > t|X1 > Y1) = 2

∫∞
0
FX1(t+ y)dFY1(y)∫∞

0
FX1(y)dFY1(y)

,

i.e., the survival function of T1 is same as that of (X1)Y1 . Similarly, the survival function

of T2 is same as that of (X2)Y2 . In reliability theory, the system which survives for a

longer time period without load-sharing is considered to be more robust. It may be of

interest to compare T1 and T2 (equivalently, (X1)Y1 and (X2)Y2) in order to determine

which system is more robust. If α1 < 1 and α1 ≤ α2, then Y1 ≤lr Y2 from Dewan and

Khaledi (2014). Also from Dewan and Khaledi (2014) we show that X1 ≤hr X2 and

both X1 and X2 are DFR. Thus condition of Theorem 5.2.3 are satisfied for s = 1 and,

consequently, (X1)Y1 ≤hr (X2)Y2 . Hence system B is more robust than system A.



Chapter 6

Stochastic Properties of Residual

Lifetime Mixture Models
1

In this chapter, we enhance the study of stochastic comparisons and ageing properties of

residual lifetime mixture models. To this aim, first we perform stochastic comparisons of

two different mixture models under lr, hr, mrl and vrl orders having different baseline dis-

tributions as well as two different mixing distributions. Then, we develop some sufficient

conditions which lead to the stochastic comparisons of these mixture models based on

rh, mit and vit orders. Furthermore, we show that ILR, IFR, DMRL, DVRL and IVRL

classes are preserved under the formation of the model. Few applications in reliability

engineering are also investigated.

6.1 Introduction

Mixture models arise in a number of applications and statistical settings when the pop-

ulation of lifetimes is not homogeneous. They are widely used when all the items in the

population do not have exactly the same distribution rather data from several populations

are mixed and information about which subpopulation gave rise to individual data points

1A manuscript based on this chapter has been accepted in Mathematical Methods of Operations Re-

search, 2021.
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is unavailable. In practical situations, it is hard to find data that are not some kind of

a mixture, because there is almost always some relevant covariate that is not observed.

For example, measurements of life lengths of a device may be gathered without regard

to the manufacturer, or data may be gathered on humans without regard, say, to blood

type. If the ignored variable (manufacturer or blood type) has a bearing on the char-

acteristic being measured, then the data are said to come from a mixture (cf. Marshall

and Olkin, 2007). Formally, a mixture model corresponds to the mixture distribution

that represents the probability distribution of observation in the overall population. Let

F = {F (· |θ) : θ ∈ Θ} be a family of distributions indexed by a parameter θ which

takes values in a set Θ. In reliability engineering applications, the past age parameter θ

exhibits random behaviour. When θ can be regarded as a random variable with a distri-

bution function (df) H, then F ∗(x) =
∫

Θ
F (x|θ)dH(θ) is the mixture of F with respect

to H, and H is called the mixing distribution. The corresponding survival function (sf) is

given by F
∗
(x) =

∫
Θ
F (x|θ)dH(θ). Mixtures also play a central role in Bayesian statistics,

not from a physical mixing of several populations but from a lack of precise knowledge of

the exact distribution from which data are obtained.

Study of duration of a system or some living organism is a subject of interest specially

in reliability, survival analysis, actuary, economics, biology and many other fields. Con-

sider a system which has survived up to time t and is still working. The distribution of

remaining life for an unfailed item of age t is often of interest and plays a recurring role

in what follows. Let the lifetime of a fresh item be represented by a random variable X,

having an absolutely continuous df F and sf F = 1−F , with distributional support of X

as [0,∞). Then Xt = (X − t|X > t) is known as the residual life of X at age t > 0 and

its sf is given by

F (x|t) =
F (x+ t)

F (t)
, ∀ x, t > 0. (6.1.1)

Customary study of the residual lifetime often concerns the scenario in which the system

or component has already survived to a certain age and is still working. However, in many

practical circumstances the age parameter t may not be constant and the occurrence of

heterogeneity is sometimes unpredictable and unexplained. Also, in reliability engineering,

survival analysis and many other applied areas, researcher often encounter the scenario
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in which a system or a component has survived one unknown age. Usually this unknown

age can be modeled by a nonnegative mixing random variable. To be more specific,

consider a population composed of lifetime devices of various ages that are still working.

Suppose that a device is randomly taken from the population in which its age is naturally

unknown. For evaluating the residual life of this device after the time up which it has

already survived, the parametric residual life distribution with a constant parameter does

not work. This is because the age of the selected device is indeed a random variable (cf.

Kayid and Izadkhah, 2015b). Suppose that the random behaviour of the age is described

by a random variable Y with df G. For simplicity, assume that the support of Y is also

[0,∞). To account the influence of the random ages on the residual lifetime distribution

and to handle the heterogeneity of the age parameter t in residual lifetime family of

distributions, Kayid and Izadkhah (2015b) introduced an extended mixture model with

sf

F
Y

(x) =

∫ ∞
0

F (x+ y)

F (y)
dG(y), (6.1.2)

which can be interpreted as the average survival probability of Xt with respect to the

random age Y . Denote by XY , the random variable that has the sf (6.1.2) with baseline

random variable X and mixing random age Y . Then, the df of XY is given by

F Y (x) =

∫ ∞
0

F (x+ y)− F (y)

F (y)
dG(y).

The notion of residual lifetime mixture model (6.1.2) has been considered in the literature

as residual lifetime with a random age (RLRA) (see Finkelstein, 2002b; Finkelstein and

Vaupel, 2015; Cha and Finkelstein, 2018). For example, when an item is selected from

a large number of statistically identical items having different (unknown) ages running

through an ageing process, then the remaining life of that item is represented by RLRA.

Random age naturally arises also in population biology and demography when population

of organisms are described by its age distribution at each chronological instant of time.

Recently, Hazra et al. (2017), introduced this concept of RLRA for the residual lifetime of

manufactured components with a random age. In real life, technical items can be incepted

into operation having already some random age. Assume that we do not know when an

operating item has been incepted into operation. In order to model its unknown initial
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age we recall (6.1.2).

In the literature, one can find another notion of random age called residual lifetime

with random time (RLRT) represented by the random variable XY = (X − Y |X > Y )

where the remaining lifetime is defined after an item has survived in [0, Y ]. For RLRT, if

X and Y are independent, the sf is defined as

F Y (x) =

∫∞
0
F (x+ y)dG(y)∫∞

0
F (y)dG(y)

,

which gives the conditional survival probability of the remaining lifetime given that the

lifetime survives a random time. To get a feel on the difference between RLRT and RLRA

recall the example due to Misra and Naqvi (2018b). Consider the case of buying a second

hand car from a company that sells used cars. Suppose the random variable Y denotes

the time for which cars have been used (initial age) before being put on sale and X is

the total life of those cars. Now, if a car is directly purchased from a potential seller in

the locality, then the remaining lifetime of that car would be defined by RLRT XY . But,

when the car is purchased (picked up at random) from a lot/mixture of used cars available

with the car selling company, then the remaining lifetime of the car would be defined by

RLRA XY . For a detailed discussion on the connection between RLRT and RLRA one

may refer to Li and Fang (2018).

The simplest and the most popular method of comparing the magnitudes of two ran-

dom variables X1 and X2 are through their means and medians. It may happen that in

some cases the median of X1 is larger than that of X2, while the mean of X1 is smaller

than the mean of X2. However, this confusion will not arise if the random variables are

stochastically ordered. Similarly, the same may happen if one would like to compare

the variability of X1 with that of X2 based on only numerical measures like variance,

standard deviation, and so forth. Besides, these characteristics of distributions might not

exist in some cases. In most cases one can express various forms of knowledge about the

underlying distributions in terms of their survival, quantile, hazard rate, mean/variance

residual life functions and other suitable functions of probability distributions in reversed

time. These methods are much more informative than those based only on few numerical

characteristics of distributions. Comparisons of random variables based on such functions
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usually establish partial orders among them. We call them as stochastic orders. Recently,

stochastic comparisons and ageing notions of mixture model have received much attention

due to their important role in risk theory, reliability and various areas of applied proba-

bility and engineering. If two mixture models have the different mixing distributions and

same as well as different generic distributions, then it might be of interest to compare

the residual lifetimes of these models. For the RLRA, Finkelstein and Vaupel (2015) and

Cha and Finkelstein (2018) investigated the stochastic comparisons. In past, stochastic

properties of mixture models with respect to lr, hr, rh and mrl orders have been studied

by Kayid and Izadkhah (2015) and Hazra et al. (2017). More recently, following the same

spirit, Misra and Naqvi (2018b) further provided several stochastic comparison results on

the RLRAs. But, another context where the stochastic orders arise is in the comparison

of random variables in terms of their variability or dispersion. This study aims to further

explore the stochastic comparisons on the residual lifetime mixture models in the sense

of mrl, mit, vrl and vit orders for which the current literature seems to have been silent.

For some discussions on variance residual life (inactivity time) one may refer to Gupta

(2006), Mahdy (2012) and Kayid and Izadkhah (2016). For different stochastic properties

of RLRT see, for example, the works of Yue and Cao (2000), Li and Zuo (2004), Li and

Xu (2006), Misra et al. (2008), Nanda and Kundu (2009), Cai and Zheng (2012), Dewan

and Khaledi (2014), Misra and Naqvi (2018a), to mention a few.

In this chapter, following Hazra et al. (2017) and Misra and Naqvi (2018b), we con-

sider some further stochastic comparisons of residual lifetime mixture models arising out

of different base line distributions and/or different mixing distributions. First we recall

definitions of some stochastic orders and ageing classes that will be used in this chapter.

For details one may refer to the famous books by Shaked and Shanthikumar (2007), Bar-

low and Proschan (1981), Belzunce et al. (2015) and Müller and Stoyan (2002), among

others.

Definition 6.1.1. For two random variables X and Y , X is said to be smaller than Y in

(a) usual stochastic order (denoted by X 6st Y ) if F (t) 6 G(t) for all t > 0;

(b) hazard rate order (denoted by X 6hr Y ) if F (t)/G(t) is decreasing in t > 0;
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(c) reversed hazard rate order (denoted by X 6rh Y ) if F (t)/G(t) is decreasing in t > 0;

(d) likelihood ratio order (denoted by X 6lr Y ) if f(t)/g(t) is decreasing in t > 0;

(e) mean residual life order (denoted by X 6mrl Y ) if∫∞
t
F (x)dx∫∞

t
G(x)dx

is decreasing in t > 0;

(f) mean inactivity time order (denoted by X 6mit Y ) if∫ t
0
F (x)dx∫ t

0
G(x)dx

is decreasing in t > 0;

(g) variance residual life order (denoted by X 6vrl Y ) if∫∞
t

∫∞
x
F (u)dudx∫∞

t

∫∞
x
G(u)dudx

is decreasing in t > 0;

(h) variance inactivity time order (denoted by X 6vit Y ) if∫ t
0

∫ x
0
F (u)dudx∫ t

0

∫ x
0
G(u)dudx

is decreasing in t > 0;

(i) convex order (denoted by X 6cx Y ) if
∫∞
t
F (u)du 6

∫∞
t
G(u)du for all t > 0;

(j) increasing concave order (denoted by X 6icv Y ) if
∫ t

0
F (u)du >

∫ t
0
G(u)du for all

t > 0.

The following well-known ageing classes are closely related to our discussion.

Definition 6.1.2. A random variable X is said to have an

(a) increasing (resp. decreasing) likelihood ratio (ILR (resp. DLR)) if for any a > 0,

f(t+ a)/f(t) is decreasing (resp. increasing) in t > 0;

(b) increasing (resp. decreasing) failure rate (IFR (resp. DFR)) if Xt is stochastically

decreasing (resp. increasing) in t > 0;

(c) increasing (resp. decreasing) mean residual life (IMRL (resp. DMRL)) if∫∞
t
F (x)dx

F (t)
is increasing (resp. decreasing) in t > 0;
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(d) increasing (resp. decreasing) variance residual life (IVRL (resp. DVRL)) if∫∞
t

∫∞
x
F (u)dudx∫∞

t
F (x)dx

is increasing (resp. decreasing) in t > 0,

or equivalently,∫∞
t

∫∞
x
F (u)dudx

F (t)
is increasing (resp. decreasing) in t > 0;

(e) decreasing reverse hazard rate (DRHR) if X(t) is stochastically increasing in t > 0;

(f) new better (resp. worse) than used (NBU (resp. NWU)) if F (x+y) 6 (>)F (x)F (y),

for all x, y > 0;

(g) new better (resp. worse) than used in convex order (NBUCX (resp. NWUCX)) if∫∞
x
F (u+ y)du 6 (>)F (y)

∫∞
x
F (u)du, for all x, y > 0.

This chapter is organized as follows. In Section 6.2, first we provide few simple char-

acterization results and then establish some useful stochastic ordering relations of two

different mixture models under lr, hr, mrl and vrl orders having different baseline and

mixing distributions. Later, in view of the proposed model, we perform some stochas-

tic comparisons based on rh, mit and vit orders. We also show that ILR, IFR, DMRL,

DVRL and IVRL classes are preserved for this model under certain conditions. In Section

6.3, we provide some examples to illustrate the applications of the results derived in this

chapter to guaranteed lead times and reliability engineering. Throughout this chapter,

the random variables are assumed to be nonnegative and absolutely continuous.

6.2 Stochastic Comparison Results and Ageing Prop-

erties

Stochastic comparisons of residual lifetime mixture model (XY ) based on st, lr, hr, rh

and mrl orders are studied by kayid and Izadkhah (2015), Hazra et al. (2017), Misra and

Naqvi (2018b) and Li and Fang (2018), but to the best of our knowledge, till now, no work
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seems to have been done based on mit, vrl and vit orders. Here we perform stochastic

comparisons of XY1
1 and XY2

2 , the residual lifetime mixture models having different mixing

distributions, with respect to lr, hr, mrl and vrl orders with assuming no sufficient con-

ditions on mixing random age in contrast to Misra and Naqvi (2018b). Later we discuss

stochastic comparisons of XY1 and XY2 , the residual lifetime mixture models with the

same generic lifetime, under rh, mit and vit orders. In addition, we provide some ageing

related results. Before coming to the main discussion let us start with some simple results

on stochastic comparison of the average remaining lifetime of an item with its generic

lifetime having some specific ageing properties.

Theorem 6.2.1. Let X be the lifetime of an item with random age Y . Then

i. XY 6st (>st)X if X is NBU (NWU);

ii. XY 6hr (>hr)X if X is IFR (DFR);

iii. XY 6mrl (>mrl)X if X is DMRL (IMRL);

iv. XY 6cx (>cx)X if X is NBUCX (NWUCX);

v. XY 6vrl (>vrl)X if X is DVRL (IVRL).

Proof: (i) Suppose that X is NBU (NWU). Then it can easily be seen that∫ ∞
0

F (x+ y)

F (y)
dG(y) 6 (>)

∫ ∞
0

F (x)dG(y)

which implies that XY 6st (>st)X.

To prove (ii), suppose that X is IFR (DFR). Now

F
Y

(x)

F (x)
=

1

F (x)

∫ ∞
0

F (x+ y)

F (y)
dG(y)

=

∫ ∞
0

F (x+ y)

F (x)

1

F (y)
dG(y)

is decreasing (increasing) in x, since F (x+y)

F (x)
is decreasing (increasing) in x for X being

IFR (DFR). Hence XY 6hr (>hr)X.
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For (iii), let X be DMRL (IMRL). Then
∫∞
x F (u+y)du∫∞
x F (u)du

is decreasing (increasing) in x. Now

∫∞
x
F
Y

(u)du∫∞
x
F (u)du

=
1∫∞

x
F (u)du

∫ ∞
x

∫ ∞
0

F (u+ y)

F (y)
dG(y)du

=

∫ ∞
0

∫∞
x
F (u+ y)du∫∞
x
F (u)du

1

F (y)
dG(y),

which is decreasing (increasing) in x. Hence XY 6mrl (>mrl)X.

(iv) Suppose that X is NBUCX (NWUCX). Then, for all x > 0,∫ ∞
x

F (u+ y)du 6 (>)F (y)

∫ ∞
x

F (u)du

⇒
∫ ∞

0

∫ ∞
x

F (u+ y)

F (y)
dudG(y) 6 (>)

∫ ∞
0

dG(y)

∫ ∞
x

F (u)du

⇒
∫ ∞
x

∫ ∞
0

F (u+ y)

F (y)
dG(y)du 6 (>)1×

∫ ∞
x

F (u)du

⇒ XY 6cx (>cx)X.

For (v), let X be DVRL (IVRL). Then
∫∞
x

∫∞
v F (u+y)dudv∫∞

x

∫∞
v F (u)dudv

is decreasing (increasing) in x.

Now ∫∞
x

∫∞
v
F
Y

(u)dudv∫∞
x

∫∞
v
F (u)dudv

=
1∫∞

x

∫∞
v
F (u)dudv

∫ ∞
x

∫ ∞
v

∫ ∞
0

F (u+ y)

F (y)
dG(y)dudv

=

∫ ∞
0

∫∞
x

∫∞
v
F (u+ y)dudv∫∞

x

∫∞
v
F (u)dudv

1

F (y)
dG(y),

which is decreasing (increasing) in x. Hence XY 6vrl (>vrl)X. �

Now we consider the stochastic comparisons of two different mixture models having

different baseline distributions as well as two different mixing distributions. We present

some sufficient conditions under which lr, hr, mrl and vrl orders between X1 and X2 are

preserved for the mixture models.

Theorem 6.2.2. Let Xi, i = 1, 2 be two nonnegative random variables having probability

density functions (pdf) fi, sfs F i. Let Yi be another two nonnegative random variables

with dfs Gi, i = 1, 2. If
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i. X1 6lr X2, X2 is DLR and X1 is ILR, then XY1
1 6lr X

Y2
2 ;

ii. X1 6hr X2, X2 is DFR and X1 is IFR, then XY1
1 6hr X

Y2
2 ;

iii. X1 6mrl X2, X2 is IMRL and X1 is DMRL, then XY1
1 6mrl X

Y2
2 ;

iv. X1 6vrl X2, X2 is IVRL and X1 is DVRL, then XY1
1 6vrl X

Y2
2 .

Proof: (i) Since X2 is DLR,

f2(x+ y)

f2(x)
is increasing in x > 0. (6.2.1)

Also,

f1(x+ y)

f1(x)
is decreasing in x > 0 (6.2.2)

as X1 is ILR. Again, X1 6lr X2 gives

f1(x)

f2(x)
is decreasing in x > 0. (6.2.3)

Thus, on using (6.2.1), (6.2.2) and (6.2.3), we arrive at

fY22 (x)

fY11 (x)
=

∫∞
0

f2(x+y)

F 2(y)
dG2(y)∫∞

0
f1(x+y)

F 1(y)
dG1(y)

=
f2(x)

f1(x)
×

∫∞
0

f2(x+y)
f2(x)

1
F 2(y)

dG2(y)∫∞
0

f1(x+y)
f1(x)

1
F 1(y)

dG1(y)

is increasing in x > 0. Hence XY1
1 6lr X

Y2
2 .

(ii)

F 2(x+ y)

F 2(x)
is increasing in x > 0 (6.2.4)

as X2 is DFR. Again, since X1 is IFR which gives

F 1(x+ y)

F 1(x)
is decreasing in x > 0. (6.2.5)

On the other hand,

F 1(x)

F 2(x)
is decreasing in x > 0 (6.2.6)
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in accordance with X1 6hr X2. Thus, in view of (6.2.4), (6.2.5) and (6.2.6) we have

F
Y2
2 (x)

F
Y1
1 (x)

=

∫∞
0

F 2(x+y)

F 2(y)
dG2(y)∫∞

0
F 1(x+y)

F 1(y)
dG1(y)

=
F 2(x)

F 1(x)
×

∫∞
0

F 2(x+y)

F 2(x)
1

F 2(y)
dG2(y)∫∞

0
F 1(x+y)

F 1(x)
1

F 1(y)
dG1(y)

is increasing in x > 0. Hence XY1
1 6hr X

Y2
2 .

(iii) Since X2 is IMRL, ∫∞
x
F 2(u+ y)du∫∞
x
F 2(u)du

is increasing in x > 0.

Also, X1 DMRL yields ∫∞
x
F 1(u+ y)du∫∞
x
F 1(u)du

is decreasing in x > 0.

Again X1 6mrl X2 which in turn gives that∫∞
x
F 1(u)du∫∞

x
F 2(u)du

is decreasing in x > 0.

Therefore, on using these facts we arrive at∫∞
x
F
Y2
2 (u)du∫∞

x
F
Y1
1 (u)du

=

∫∞
x

∫∞
0

F 2(u+y)

F 2(y)
dG2(y)du∫∞

x

∫∞
0

F 1(u+y)

F 1(y)
dG1(y)du

=

∫∞
x
F 2(u)du∫∞

x
F 1(u)du

×

∫∞
0

∫∞
x F 2(u+y)du∫∞
x F 2(u)du

1
F 2(y)

dG2(y)∫∞
0

∫∞
x F 1(u+y)du∫∞
x F 1(u)du

1
F 1(y)

dG1(y)

which is increasing in x > 0. Hence XY1
1 6mrl X

Y2
2 .

(iv) ∫∞
x

∫∞
v
F 2(u+ y)dudv∫∞

x

∫∞
v
F 2(u)dudv

is increasing in x > 0

as X2 is IVRL. Also, the DVRL property of X1 implies that∫∞
x

∫∞
v
F 1(u+ y)dudv∫∞

x

∫∞
v
F 1(u)dudv

is decreasing in x > 0.

Since X1 6vrl X2 so ∫∞
x

∫∞
v
F 1(u)dudv∫∞

x

∫∞
v
F 2(u)dudv

is decreasing in x > 0.
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Now ∫∞
x

∫∞
v
F
Y2
2 (u)dudv∫∞

x

∫∞
v
F
Y1
1 (u)dudv

=

∫∞
x

∫∞
v

∫∞
0

F 2(u+y)

F 2(y)
dG2(y)dudv∫∞

x

∫∞
v

∫∞
0

F 1(u+y)

F 1(y)
dG1(y)dudv

=

∫∞
x

∫∞
v
F 2(u)dudv∫∞

x

∫∞
v
F 1(u)dudv

×

∫∞
0

∫∞
x

∫∞
v F 2(u+y)dudv∫∞

x

∫∞
v F 2(u)dudv

1
F 2(y)

dG2(y)∫∞
0

∫∞
x

∫∞
v F 1(u+y)dudv∫∞

x

∫∞
v F 1(u)dudv

1
F 1(y)

dG1(y)

is increasing in x > 0. Hence XY1
1 6vrl X

Y2
2 . �

Note that Theorem 6.2.2(iii) can be compared with Theorem 2.13 of Misra and Naqvi

(2018b) where the same stochastic comparison result has been obtained with an extra

sufficient condition Y1 6hr Y2 which is relaxed here. The following example illustrates the

above theorem.

Example 6.2.1. (i) Suppose that random variables X1 and X2 have pdfs f1(x) = 2e−2x, x >

0 and f2(x) = 1/(1 + x)2, x > 0, respectively and the pdf of Y1 and Y2 are g1(x) =

xe−x, x > 0 and g2(x) = e−x, x > 0, respectively. Now f1(x)/f2(x) = 2(1 + x)2/e2x is

decreasing in x > 0. hence, X1 6lr X2. Clearly X2 is DLR and X1 is ILR. Thus, all the

conditions of Theorem 6.2.2(i) are satisfied. Now

fY22 (x)

fY11 (x)
= 4(1 + x+ 0.3x2)e2x

is increasing in x > 0. Hence XY1
1 6lr X

Y2
2 .

(ii) Suppose that X1 and X2 have sfs F 1(x) = e−(x+x2/2), x > 0 and F 2(x) = e−x, x > 0,

respectively. Now F 1(x)/F 2(x) = e−x
2/2 is decreasing in x > 0. Hence, X1 6hr X2.

Clearly, X2 is DFR and X1 is IFR. Therefore, it follows from Theorem 6.2.2(ii) that for

any nonnegative random variables Y1 and Y2, XY1
1 6hr X

Y2
2 .

The following lemma will be used to prove the upcoming theorems. Before discussing

the lemma we provide a definition from Karlin (1968) that a nonnegative function ψ :

X × Y → R, the set of real numbers, is said to be TP2 (totally positive of order 2) if

ψ(x, y)ψ(x∗, y∗) > ψ(x, y∗)ψ(x∗, y) for all x, x∗ ∈ X and y, y∗ ∈ Y such that x 6 x∗ and

y 6 y∗, where X and Y are subsets of the real line. ψ is said to be RR2 (reverse regular

of order 2) if the inequality is reversed.
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Lemma 6.2.1. (Khaledi and Shaked, 2010). Let ψ(x, y) be any TP2 (resp. RR2) function

(not necessarily a reliability function) in x ∈ X and y ∈ Y and Fi(x) be a distribution

function for each i. Denote

Hi(y) =

∫
X
ψ(x, y)dFi(x).

If Fi(x) is TP2 in i ∈ {1, 2} and x ∈ X and if ψ(x, y) is decreasing in x for each y, then

Hi(y) is TP2 (resp. RR2) in y ∈ Y and i ∈ {1, 2}.

In some practical situations, it may be of interest to compare the residual life mixture

models concerning two populations with the same generic lifetime but different random

ages. In the sequel, we provide some additional results on stochastic comparisons of XY1
1

and XY2
2 under the assumption that X1

d
= X2 with respect to rh, mit and vit orders, where

d
= means equality in distribution. The following result provides stochastic comparisons of

XY1 and XY2 under rh ordering.

Theorem 6.2.3. Suppose that Y1 6rh Y2. If Xt1 6rh Xt2 for all 0 < t1 6 t2, then

XY1 6rh XY2.

Proof: Let Xt1 6rh Xt2 for all 0 < t1 6 t2, then

F (t2+x)−F (t2)

F (t2)

F (t1+x)−F (t1)

F (t1)

is increasing in x > 0.

This implies that
F (y + x)− F (y)

F (y)
is TP2 in x ∈ X and y ∈ Y. (6.2.7)

On the other hand,

Gi(y) is TP2 in i ∈ {1, 2} and y ∈ Y (6.2.8)

if Y1 6rh Y2. Again, Xt1 6rh Xt2 implies that Xt1 6st Xt2 for all 0 < t1 6 t2. Or

equivalently, we can say that

F (y + x)− F (y)

F (y)
is decreasing in y > 0. (6.2.9)
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Therefore, on using (6.2.7), (6.2.8) and (6.2.9), in Lemma 6.2.1, we arrive at∫ ∞
0

F (y + x)− F (y)

F (y)
dGi(y) is TP2 in i ∈ {1, 2} and x ∈ X.

Or equivalently, ∫∞
0

F (y+x)−F (y)

F (y)
dG2(y)∫∞

0
F (y+x)−F (y)

F (y)
dG1(y)

is increasing in x > 0.

Hence XY1 6rh XY2 . �

Consider the following example in support of Theorem 6.2.3.

Example 6.2.2. Let X follow the distribution

F (x) = 1− 1

(x+ 1)
, x > 0.

Now, F (t2+x)−F (t2)
F (t1+x)−F (t1)

= (t1+1)(x+t1+1)
(t2+1)(x+t2+1)

is increasing in x > 0 giving that Xt1 6rh Xt2 for all

t1 6 t2. Further, let the dfs of Y1 and Y2 be

G1(y) = 1− e−y and G2(y) = 1−
(

1 +
y

2

)
e−y.

It is easy to verify that, Y1 6rh Y2. Now∫∞
0

F (y+x)−F (y)

F (y)
dG2(y)∫∞

0
F (y+x)−F (y)

F (y)
dG1(y)

=

∫∞
0

y+1
2(x+y+1)

e−ydy∫∞
0

1
x+y+1

e−ydy
= α(x), say

is increasing in x ∈ (0,∞) as shown in Figure 6.2.1. It is to be mentioned here that the

substitution v = e−x has been used while plotting the curve so that α(x) = Q(v), say.

Hence XY1 6rh XY2.

The following theorem provides some sufficient conditions for stochastic monotonicity

in terms of the mit order.

Theorem 6.2.4. Assume that Y1 6rh Y2. If Xt1 6mit Xt2 for all 0 < t1 6 t2, then

XY1 6mit XY2.

Proof: Let Xt1 6mit Xt2 for all 0 < t1 6 t2. Then∫ x
0 [F (t2+u)−F (t2)]du

F (t2)∫ x
0 [F (t1+u)−F (t1)]du

F (t1)

is increasing in x > 0,
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Figure 6.2.1: Plot of Q(v) against v ∈ [0, 1] (Example 6.2.2)

which in turn gives that
∫ x
0 [F (y+u)−F (y)]du

F (y)
is TP2 in x ∈ X and y ∈ Y. Again, Gi(y) is TP2

in i ∈ {1, 2} and y ∈ Y when Y1 6rh Y2. Further, Xt1 6mit Xt2 implies that Xt1 6icv Xt2

for all t1 6 t2. Or equivalently,
∫ x
0 [F (y+u)−F (y)]du

F (y)
is decreasing in y > 0. Therefore, from

Lemma 6.2.1, we have∫ ∞
0

∫ x
0

[F (y + u)− F (y)]du

F (y)
dGi(y) is TP2 in i ∈ {1, 2} and x ∈ X.

Which implies that∫ x

0

∫ ∞
0

F (y + u)− F (y)

F (y)
dGi(y)du is TP2 in i ∈ {1, 2} and x ∈ X.

Or equivalently, ∫ x
0

∫∞
0

F (y+u)−F (y)

F (y)
dG2(y)du∫ x

0

∫∞
0

F (y+u)−F (y)

F (y)
dG1(y)du

is increasing in x > 0.

Hence XY1 6mit XY2 . �

In the following example we verify the above theorem.

Example 6.2.3. Let X have the df

F (x) = 1− 1

(x+ 1)2
, x > 0.

Now, ∫ x
0

[F (t2 + u)− F (t2)]du∫ x
0

[F (t1 + u)− F (t1)]du
=

(
t1 + 1

t2 + 1

)2(
t1 + x+ 1

t2 + x+ 1

)
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Figure 6.2.2: Plot of P (v) against v ∈ [0, 1] (Example 6.2.3)

is increasing in x > 0 giving that Xt1 6mit Xt2 for all 0 < t1 6 t2. Further, let the dfs of

Y1 and Y2 be

G1(y) = 1− e−y and G2(y) = 1−
(

1 +
y

2

)
e−y.

It is easy to verify that, Y1 6rh Y2. Now∫ x
0

∫∞
0

F (y+u)−F (y)

F (y)
dG2(y)du∫ x

0

∫∞
0

F (y+u)−F (y)

F (y)
dG1(y)du

=

∫∞
0

y+1
2(x+y+1)

e−ydy∫∞
0

1
x+y+1

e−ydy
= β(x), say

is increasing in x ∈ (0,∞) as shown in Figure 6.2.1. Note that the substitution v = e−x

has been used while plotting the curve so that β(x) = P (v), say. Hence XY1 6mit XY2.

Now we provide some sufficient conditions under which the VIT order holds between

two mixture models having different mixing distributions.

Theorem 6.2.5. If Y1 6rh Y2 and Xt1 6vit Xt2 for all 0 < t1 6 t2, then XY1 6vit XY2.

Proof: Let Xt1 6vit Xt2 for all 0 < t1 6 t2. Then

∫ x
0

∫ v
0 [F (t2+u)−F (t2)]dudv

F (t2)∫ x
0

∫ v
0 [F (t1+u)−F (t1)]dudv

F (t1)

is increasing in x > 0,

which in turn gives that∫ x
0

∫ v
0

[F (y + u)− F (y)]dudv

F (y)
is TP2 in x ∈ X and y ∈ Y.
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Again, Gi(y) is TP2 in i ∈ {1, 2} and y ∈ Y when Y1 6rh Y2. According to Lemma 1.(ii)

of Kayid and Izadkhah (2016),
∫ x

0

∫ v
0

(F (u) − G(u))dudv > 0, for all x > 0 if X 6vit Y .

Thus, ∫ x

0

∫ v

0

[
F (t1 + u)− F (t1)

F (t1)
− F (t2 + u)− F (t2)

F (t2)

]
dudv > 0

as Xt1 6vit Xt2 , which implies that,∫ x
0

∫ v
0

[F (y + u)− F (y)]dudv

F (y)
is decreasing in y > 0.

Combining these observations, from Lemma 6.2.1, we have∫ ∞
0

∫ x
0

∫ v
0

[F (y + u)− F (y)]dudv

F (y)
dGi(y) is TP2 in i ∈ {1, 2} and x ∈ X,

which in turn gives that∫ x

0

∫ v

0

∫ ∞
0

F (y + u)− F (y)

F (y)
dGi(y)dudv is TP2 in i ∈ {1, 2} and x ∈ X.

This can equivalently be written as∫ x
0

∫ v
0

∫∞
0

F (y+u)−F (y)

F (y)
dG2(y)dudv∫ x

0

∫ v
0

∫∞
0

F (y+u)−F (y)

F (y)
dG1(y)dudv

is increasing in x > 0.

Hence XY1 6vit XY2 . �

The following example provides an application of the above theorem.

Example 6.2.4. Let the random variable X follow the distribution

F (x) = 1− 1

(x+ 1)3
, x > 0.

Then, it can be seen that Xt1 6vit Xt2 for all 0 < t1 6 t2. Therefore, from Theorem 6.2.5,

XY1 6vit XY2 for any Y1 6rh Y2.

We conclude this section with the preservation properties of some ageing classes of life

distributions for residual lifetime mixture model. If one has the information on ageing

properties of the baseline distribution then it is useful to study the ageing properties

of the corresponding mixture model. In the context of mixture model, Lynch (1999)
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provided some conditions so that a mixture of distributions with increasing failure rates

has increasing failure rate. Later, Block et al. (2003) showed that similar preservation

properties are also possible for increasing failure rate average, NBU and DMRL classes.

Recently, it has been shown by Kayid and Izadkhah (2015b) that DLR, DFR and IMRL

classes are preserved under the formation of residual lifetime mixture model. Here we

address the question of their dual classes. In the upcoming theorems, we show that under

certain conditions ILR, IFR, DMRL, IVRL and DVRL classes are also preserved for this

model.

Theorem 6.2.6. Let X and Y be two nonnegative random variables with Y DRHR. If

i. X is IFR then XY is IFR;

ii. X is DMRL then XY is DMRL;

iii. X is DVRL then XY is DVRL.

Proof: (i) Consider the following

F
Y

(x+ t)

F
Y

(t)
=

∫∞
0

F (x+t+y)

F (y)
dG(y)∫∞

0
F (t+y)

F (y)
dG(y)

.

This can further be written as

F
Y

(x+ t)

F
Y

(t)
=

∫∞
0

F (x+θ)

F (θ−t) dG(θ − t)∫∞
0

F (θ)

F (θ−t)dG(θ − t)
.

Let us fix a x and then write X1
st
= X − x and X2

st
= X, so the above equality can be

restated as

F
Y

(x+ t)

F
Y

(t)
=

∫∞
0

F 1(θ)

F (θ−t)dG(θ − t)∫∞
0

F 2(θ)

F (θ−t)dG(θ − t)
. (6.2.10)

Now X is IFR if and only if

F (x+ θ)

F (θ)
is decreasing in θ,

which can be restated as
F 1(θ)

F 2(θ)
is decreasing in θ.
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Or equivalently,

F i(θ) is TP2 in i ∈ {1, 2} and θ ∈ X,

which in turn implies that

F i(θ)

F (θ − t)
is TP2 in i ∈ {1, 2} and θ ∈ X. (6.2.11)

Again,
F i(θ)

F (θ − t)
is decreasing in θ > t, for all i = 1, 2 (6.2.12)

since X is IFR. Also,

G(θ − t) is TP2 in (θ, t) ∈ (X,Y) (6.2.13)

as Y is DRHR. Thus, on using (6.2.11), (6.2.12) and (6.2.13) in Lemma 6.2.1, we arrive

at ∫ ∞
0

F i(θ)

F (θ − t)
dG(θ − t) is TP2 in i ∈ {1, 2} and t ∈ Y.

Or equivalently, ∫∞
0

F 1(θ)

F (θ−t)dG(θ − t)∫∞
0

F 2(θ)

F (θ−t)dG(θ − t)
is decreasing in t.

Thus, recalling (6.2.10), we have

F
Y

(x+ t)

F
Y

(t)
is decreasing in t.

Hence XY is IFR.

(ii) Let

Φ
X

(t) =

∫ ∞
t

F (u)du.

Now, XY is DMRL if and only if

Φ
XY

(x+ t)

Φ
XY

(t)
is decreasing in t, for all x > 0.

The above statement can be rewritten as,∫∞
0

Φ
X

(t+x+y)

F (y)
dG(y)∫∞

0
Φ
X

(t+y)

F (y)
dG(y)

is decreasing in t, for all x > 0.



160 Chapter 6. Stochastic Properties of Residual Lifetime Mixture Models

Or equivalently, ∫∞
0

Φ
X

(θ+x)

F (θ−t) dG(θ − t)∫∞
0

Φ
X

(θ)

F (θ−t)dG(θ − t)
is decreasing in t, for all x > 0.

This can further be written as∫∞
0

∫∞
θ

F (x+u)

F (θ−t) dudG(θ − t)∫∞
0

∫∞
θ

F (u)

F (θ−t)dudG(θ − t)
is decreasing in t, for all x > 0. (6.2.14)

Let us fix a x and then write X1
st
= X − x and X2

st
= X, so (6.2.14) can be restated as∫∞

0

∫∞
θ

F 1(u)

F (θ−t)dudG(θ − t)∫∞
0

∫∞
θ

F 2(u)

F (θ−t)dudG(θ − t)
is decreasing in t, for all x > 0. (6.2.15)

Now X is DMRL if and only if∫∞
θ
F (x+ u)du∫∞
θ
F (u)du

is decreasing in θ,

which can be restated as ∫∞
θ
F 1(u)du∫∞

θ
F 2(u)du

is decreasing in θ.

Or equivalently, ∫ ∞
θ

F i(u)du is TP2 in i ∈ {1, 2} and θ ∈ X,

which in turn gives that,∫∞
θ
F i(u)du

F (θ − t)
is TP2 in i ∈ {1, 2} and θ ∈ X. (6.2.16)

Again, the DMRL property of X implies that∫∞
θ
F i(u)du

F (θ − t)
is decreasing in θ > t, for all i = 1, 2. (6.2.17)

Further, as Y is DRHR,

G(θ − t) is TP2 in (θ, t) ∈ (X,Y). (6.2.18)

Therefore, on using (6.2.16), (6.2.17) and (6.2.18) in Lemma 6.2.1, we have∫ ∞
0

∫ ∞
θ

F i(u)

F (θ − t)
dudG(θ − t) is TP2 in i ∈ {1, 2} and t ∈ Y.
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Or equivalently,∫∞
0

∫∞
θ

F 1(u)

F (θ−t)dudG(θ − t)∫∞
0

∫∞
θ

F 2(u)

F (θ−t)dudG(θ − t)
is decreasing in t, for all x > 0.

Thus, from (6.2.15) it can be seen that, XY is DMRL. �

(iii) Let

Φ
X

(t) =

∫ ∞
t

∫ ∞
v

F (u)dudv.

Now, XY is DVRL if and only if

Φ
XY

(x+ t)

Φ
XY

(t)
is decreasing in t, for all x > 0,

which can be restated as,∫∞
0

Φ
X

(t+x+y)

F (y)
dG(y)∫∞

0
Φ
X

(t+y)

F (y)
dG(y)

is decreasing in t, for all x > 0.

Or equivalently, ∫∞
0

Φ
X

(θ+x)

F (θ−t) dG(θ − t)∫∞
0

Φ
X

(θ)

F (θ−t)dG(θ − t)
is decreasing in t, for all x > 0.

This can further be written as∫∞
0

∫∞
θ

∫∞
v

F (x+u)

F (θ−t) dudvdG(θ − t)∫∞
0

∫∞
θ

∫∞
v

F (u)

F (θ−t)dudvdG(θ − t)
is decreasing in t, for all x > 0. (6.2.19)

Let us fix a x and then write X1
st
= X − x and X2

st
= X, so that (6.2.19) can be restated

as ∫∞
0

∫∞
θ

F 1(u)

F (θ−t)dudG(θ − t)∫∞
0

∫∞
θ

F 2(u)

F (θ−t)dudG(θ − t)
is decreasing in t, for all x > 0. (6.2.20)

Now X is DVRL if and only if∫∞
θ

∫∞
v
F (x+ u)dudv∫∞

θ

∫∞
v
F (u)dudv

is decreasing in θ,

which can be restated as ∫∞
θ

∫∞
v
F 1(u)dudv∫∞

θ

∫∞
v
F 2(u)dudv

is decreasing in θ.
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Or equivalently, ∫ ∞
θ

∫ ∞
v

F i(u)dudv is TP2 in i ∈ {1, 2} and θ ∈ X,

which in turn implies that,∫∞
θ

∫∞
v
F i(u)dudv

F (θ − t)
is TP2 in i ∈ {1, 2} and θ ∈ X. (6.2.21)

Again, ∫∞
θ

∫∞
v
F i(u)dudv

F (θ − t)
is decreasing in θ > t, for all i = 1, 2 (6.2.22)

since X is DVRL. On the other hand,

G(θ − t) is TP2 in (θ, t) ∈ (X,Y) (6.2.23)

as Y is DRHR. Therefore, on using (6.2.21), (6.2.22) and (6.2.23) in Lemma 6.2.1, we

arrive at ∫ ∞
0

∫ ∞
θ

∫ ∞
v

F i(u)

F (θ − t)
dudvdG(θ − t) is TP2 in i ∈ {1, 2} and t ∈ Y.

Or equivalently,∫∞
0

∫∞
θ

∫∞
v

F 1(u)

F (θ−t)dudvdG(θ − t)∫∞
0

∫∞
θ

∫∞
v

F 2(u)

F (θ−t)dudvdG(θ − t)
is decreasing in t, for all x > 0.

This in turn gives from (6.2.20) that XY is DVRL. �

The following lemma is due to Dewan and Khaledi (2014) which will be used to prove

the next theorem.

Lemma 6.2.2. Let hi(x, y), i = 1, 2, be a nonnegative real valued function on R × X,

where X is a subset of real line. If

• h2(x, y)/h1(x, y) is increasing in x and y;

• either h1(x, y) or h2(x, y) is TP2 in (x, y),
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then
s2(x)

s1(x)
=

∫
X h2(x, y)l(y)dy∫
X h1(x, y)l(y)dy

is increasing in x, where l is a continuous function with
∫
X l(y)dy <∞.

Theorem 6.2.7. Let X and Y be two nonnegative random variables. If

i. X is ILR then XY is ILR;

ii. X is IVRL then XY is IVRL.

Proof: (i) The proof will be validated if we prove that

fY (t)

fY (x+ t)
=

∫∞
0

f(t+y)

F (y)
dG(y)∫∞

0
f(x+t+y)

F (y)
dG(y)

is increasing in t. Now X is ILR if and only if

f(θ)

f(x+ θ)
is increasing in θ,

which in turn implies that

f(t+ y)

f(x+ t+ y)
is increasing in y as well as t.

Also, f(t+y) is TP2 in (y, t) as X is ILR. Therefore, follows from Lemma 6.2.2, we arrive

at ∫∞
0

f(t+y)

F (y)
dG(y)∫∞

0
f(x+t+y)

F (y)
dG(y)

is increasing in t.

Hence XY is ILR.

(ii) To prove the result it is sufficient to show that∫∞
t

∫∞
v
F
Y

(x+ u)dudv∫∞
t

∫∞
v
F
Y

(u)dudv
=

∫∞
t

∫∞
v

∫∞
0

F (x+u+y)

F (y)
dG(y)dudv∫∞

t

∫∞
v

∫∞
0

F (u+y)

F (y)
dG(y)dudv

=

∫∞
0

∫∞
t

∫∞
v F (x+u+y)dudv

F (y)
dG(y)∫∞

0

∫∞
t

∫∞
v F (u+y)dudv

F (y)
dG(y)

is increasing in t. Now X is IVRL if and only if∫∞
θ

∫∞
v
F (x+ u)dudv∫∞

θ

∫∞
v
F (u)dudv

is increasing in θ,
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which in turn implies that∫∞
y+t

∫∞
v
F (x+ u)dudv∫∞

y+t

∫∞
v
F (u)dudv

is increasing in y as well as t.

Or equivalently, ∫∞
t

∫∞
v
F (x+ u+ y)dudv∫∞

t

∫∞
v
F (u+ y)dudv

is increasing in y as well as t. (6.2.24)

On the other hand ∫ ∞
t

∫ ∞
v

F (u+ y)dudv is TP2 in (y, t),

if and only if X is IVRL. Or equivalently,∫∞
t

∫∞
v
F (u+ y)dudv

F (y)
is TP2 in (y, t). (6.2.25)

Therefore, on using (6.2.24) and (6.2.25) in Lemma 6.2.2, we have

∫∞
0

∫∞
t

∫∞
v F (x+u+y)dudv

F (y)
dG(y)∫∞

0

∫∞
t

∫∞
v F (u+y)dudv

F (y)
dG(y)

is increasing in t.

Thus ∫∞
t

∫∞
v
F
Y

(x+ u)dudv∫∞
t

∫∞
v
F
Y

(u)dudv
is increasing in t.

Hence XY is IVRL.

6.3 On Some Applications

In this section, we discuss the effectiveness of the results developed in the previous section.

Some illustrative applications in the context of statistics and reliability theory are also

included. Theorem 6.2.2 is used to make a comparison between two bids. In context

of Theorems 6.2.3-6.2.5, we also present a scenario where the stochastic comparisons of

residual lifetime mixture models in past life may be of use. In addition, using Theorem

6.2.6(i) we provide two results based on series system.
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6.3.1 Guaranteed Lead Times

Consider an industrial plant which plans to purchase two used identical instruments (say,

Instrument 1 and Instrument 2) from two different bids (say, Bid 1 and Bid 2). The age

of Instrument 1 and Instrument 2 are represented by the random variables Y1 and Y2,

respectively. Let the lifetime of Instrument 1 and Instrument 2 are represented by the

random variables X1 and X2, respectively. The average remaining lifetimes of Instrument

1 and Instrument 2 will be described by random variables XY1
1 and XY2

2 , respectively. The

question that may arise is which of the two bids to accept. Obviously, if the industrial

plant is only interested in the remaining lifetime of these instruments and moreover if

XY1
1 6st X

Y2
2 , then it is clear that Bid 2 is preferable. However, the comparisons based on

6lr and 6hr orders are more powerful than the comparison based on 6st order. Hence it

is of interest to find conditions under which XY1
1 and XY2

2 can be compared with respect

to the orders 6lr and 6hr. In this context, we have provided Theorem 6.2.2 (i) and (ii)

which yield such more powerful comparisons.

6.3.2 Lifetime devices

Suppose that two devices (say, Device A and Device B) with lifetimes X1 and X2 which

have survived unknown ages Y1 and Y2, respectively are randomly taken from the pop-

ulation composed of used devices of various ages that are still working. Then we recall

XY1
1 and XY2

2 to model the average remaining lifetimes of these devices in the total pop-

ulation after the time up which they have already survived. However, it is reasonable to

infer that in many realistic situations the random lifetime is related to the past not to

the future. For instance, suppose the states of the devices are observed only at certain

preassigned inspection times. If at time t the devices are inspected for the first time and

both are found to be down, then the failure relies on the past i.e., on which instant in

(0, t) they have failed. It is thus quite natural to study a notion that refers to past time

and not to future. Given that both the devices are known to have failed at time t, it

might be of interest to compare XY1
1 and XY2

2 by stochastic orders defined on the basis of

past life. Then, under the assumption of equal generic lifetime, the stochastic comparison
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results (Theorems 6.2.3-6.2.5) based on past life will be useful. To be more specific, from

Theorem 6.2.3 we infer that Device B is better than Device A in reversed hazard rate

order which mean that the probability that Device B has survived up to time t − ∆t is

greater than the probability that Device A has survived up to time t − ∆t (for a small

∆t > 0). Theorems 6.2.4-6.2.5 may also be used to study the times that have elapsed

since the failure of the devices and to take into account the dispersion/variability of these

elapsed interval of times.

6.3.3 Series System

Another important application of mixture model of series system arises in reliability the-

ory. Consider a two component series system where the system is made up of components

C1 and C2, say with lifetimes X1 and X2, respectively. A series system functions if and

only if all of its components function. Study of reliability properties of series system is

of great importance to reliability engineers. Clearly, min(X1, X2) represents the lifetime

of the series system comprising of components C1 and C2. Here min(X1, X2) denotes

the minimum of X1 and X2, and (min(X1, X2))Y represents the residual life of the series

system at a mixing random age Y . Also, min(XY
1 , X

Y
2 ) denotes the lifetime of a series

system having components lives XY
1 and XY

2 , where XY
1 and XY

2 are the average residual

life random variables at a mixing random age Y . Now we study the reliability properties

of (min(X1, X2))Y and min(XY
1 , X

Y
2 ). If the lifetimes of C1 and C2 are in IFR class, then

the following theorem shows that the average residual life of the series system at a mixing

random age is also in IFR.

Theorem 6.3.1. Suppose that the random variables X1 and X2 have IFR and Y has

DRHR then (min(X1, X2))Y has IFR.

Proof: If random variables X1 and X2 have IFR, then min(X1, X2) also has IFR. Also

from Theorem 6.2.6(i), if X is IFR and Y is DRHR then XY is IFR. Hence (min(X1, X2))Y

has IFR. �
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Now we show that if the generic lifetime of the components are in IFR class then the

lifetime of the series system having components lives as mixture models is also in IFR.

Theorem 6.3.2. Suppose that the random variables X1 and X2 have IFR and Y has

DRHR then min(XY
1 , X

Y
2 ) has IFR.

Proof: If random variables X1 and X2 have IFR, then min(X1, X2) also has IFR. Also

from Theorem 6.2.6(i), XY
1 and XY

2 are IFR as X1, X2 are IFR and Y is DRHR. Hence

min(XY
1 , X

Y
2 ) has IFR.

Remark 6.3.1. Both the above theorems are comparable with the results given in Property

5 and Property 6 of Gupta et al. (2012), and can be thought of as an extension of their

properties for fixed age to the case of random age.





Chapter 7

Conclusion and Future Scope of

Study

In this Chapter we summarize the findings of the work carried throughout the thesis with

an emphasis on key points and novelties. During the present investigation, several ideas

were originated which have the potential to extend the study further. We also give scope

for further study which may be undertaken based on this research work.

7.1 Summary of the Reported Work

Stochastic orders and the (ageing) classes of life distributions are being used at an ac-

celerated rate in many diverse areas of probability and statistics. In the literature, dif-

ferent types of stochastic ordering and (ageing) classes of life distributions are available.

These orderings are effective in comparing stochastic models, establishing bounds and

inequalities in reliability and queueing theory. They are useful in hypothesis testing, mul-

tiple decision problems and simultaneous comparisons in statistics, deducing probability

inequalities in probability and taking decisions under risk in economics. In reliability,

another important application of stochastic orders is the characterization of the classes

of life distributions, where with the help of these stochastic orders it is easy to study the

notion of ageing. This type of characterization is based on different type of stochastic

169
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orders defined on residual life and inactivity time. The applications of stochastic orders

and ageing notions in the field of reliability theory, queueing theory, statistics, probability

and statistical decision theory have attracted the attention of many researchers. Most

of the stochastic orders and life distribution classes are defined in terms of the reliability

measures based on residual life and inactivity time.

The present thesis has considered various aspects of residual life and inactivity time

for continuous cases. Emphasis is given to establish results related to relationships among

reliability characteristics, stochastic orders and ageing criteria of RLRT, ITRT and resid-

ual lifetime mixture model.

Chapter 1 was intended to make a bird’s eye view of the thesis, with appropriate

references to previous work, which focus on the usefulness of the residual life, inactivity

time, some associated measures, stochastic orderings, classes of life distributions, residual

life at random time, inactivity time at random time, residual lifetime mixture model in

real life scenarios, particularly, in reliability engineering.

We obtained some further results on stochastic comparisons and ageing properties

of RLRT and ITRT in Chapters 2-3 under the assumption that the generic lifetime and

random time are independent. In Chapter 2, we compared two ITRTs in terms of hr, mrl,

lr and vrl orderings, by choosing different concerned total lifetimes and observed failure

times. Then two RLRTs/ITRTs have been compared based on vrl order. Furthermore,

we discussed the ageing properties of DVRL class for RLRT. In Chapter 3, we obtained

stochastic comparisons between two RLRTs/ITRTs under rh, mit and vit orderings. Fi-

nally, DRHR, IMIT and IVIT classes of life distributions have been investigated for ITRT.

Several stochastic comparisons and ageing properties of RLRT/ITRT based on vrl or-

der, taking dependency between generic lifetime and random time have been investigated

in Chapter 4. We compared two RLRTs/ITRTs in terms of vrl ordering for one sample

problem, by choosing hr/rh order between the random times. Stochastic comparisons of

RLRT/ITRT of two systems failed at two different random times or having different ran-

dom ages based on vrl order are also investigated. Further, we studied the IVRL, DVRL

ageing classes for RLRT and ITRT. Finally, some applications have been provided.

In Chapter 5, we studied generalized stochastic ordering (s-FR) and extended some
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preservation properties of generalized ageing classes (viz. s-IFR, s-DFR) for RLRT and

ITRT, where s is a nonnegative integer. We carried out stochastic comparisons of ITRTs

under s-FR ordering, by choosing different generic lifetimes and random times. The

preservation properties and some characterizations of s-DFR ageing class and its dual

were also derived. Further, we provided an application in reliability theory. The results

strengthen some results available in the literature.

In Chapter 6, we provided stochastic comparisons of two different residual lifetime

mixture models under lr, hr, mrl and vrl orders having different baseline distributions as

well as two different mixing distributions. Then, we compared two mixture models based

on rh, mit and vit orders. Finally, we investigated the preservation properties of ILR,

IFR, DMRL, DVRL and IVRL classes under the formation of the model.

7.2 Future Research Directions

In this thesis, we endeavor to develop a theoretical framework for stochastic properties

of RLRT (including RLMM) and ITRT with applications in reliability theory under de-

pendence/independence structure. The present compilation is of course not complete. It

rather unfolded several problems which needs further investigation. Further research can

start from several aspects and particularly valuable future additions would be as follows:

• The work reported in this thesis is yet to be examined for discrete random variable.

• Recently, Amini-Seresht et al. (2020) have studied several stochastic orderings and

ageing properties of RLRT and ITRT for a coherent system. In the same vein, one

can study stochastic orderings and ageing properties of RLRT and ITRT for a series

system, parallel system, k-out-of-n system, as well as a coherent system.

• The problem of comparing two RLRTs or ITRTs in two sample problems (with

different random times) based on rh, mit and vit orders needs to be studied in

detail.

• Assuming dependence between the random life and random time, comparisons of
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two RLRTs and ITRTs in terms of rh, mit and vit orders is an area of further

research.

• Comparisons of two RLRTs or ITRTs by assuming mit/vit orders between their

system lifetimes is an area of special interest.

• As a future course of work, one may look upon the extension of the results based

on s-FR ordering under dependence structure.

• Some more stochastic order results between RLMMs can also be obtained.
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[57] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997), Modelling Extremal Events.

Karatzas, I. and Yor, M. (Eds.), Springer, Berlin.

[58] Eryilmaz, S. (2010), Mean residual and mean past lifetime of multi-state systems

with identical components. IEEE Transactions on Reliability, 59(4), 644-649.

[59] Eryilmaz, S. (2013), On residual lifetime of coherent systems after the rth failure.

Statistical Papers, 54, 243-250.

[60] Fagiuoli, E. and Pellerey, F. (1993), New partial orderings and applications. Naval

Research Logistics, 40(6), 829-842.

[61] Fagiuoli, E. and Pellerey, F. (1994), Mean residual life and increasing convex com-

parision of shock models. Statistics and Probability Letters, 20(5), 337-345.

[62] Finkelstein, M.S. (2002a), On the reversed hazard rate. Reliability Engineering and

System Safety, 78(1), 71-75.

[63] Finkelstein, M.S. (2002b), Modeling lifetimes with unknown initial age. Applied

Stochastic Models in Business and Industry, 76, 75-80.

[64] Finkelstein, M.S. and Vaupel, J.W. (2015), On random age and remaining lifetime

for populations of items. Applied Stochastic Models in Business and Industry, 31(5),

681-689.

[65] Fishburn, P.C. (1980), Stochastic dominance and moments of distributions. Mathe-

matics of Operations Research, 5(1), 94-100.

[66] Galambos, J. and Hagwood, C. (1992), The characterization of a distribution function

by the second moment of the residual life. Communications in Statistics- Theory &

Methods, 21(5), 1463-1468.



Bibliography 179

[67] Gandotra, N., Bajaj, R.K. and Gupta, N. (2011), On some reliability properties of

mean inactivity time under weighing. International Journal of Computer Applications,

30(3), 28-32.

[68] Ghai, G.L. and Mi, J. (1999), Mean residual life and its association with failure rate.

IEEE Transactions on Reliability, 8(3), 262-266.

[69] Ghebremichael, M. (2009), Nonparametric estimation of mean residual functions.

Lifetime Data Analysis, 15, 107-119.

[70] Goliforushani, S. and Asadi, M. (2008), On the discrete mean past lifetime. Metrika,

68, 209-217.

[71] Gross, A.J. and Clark, V.A. (1975), Survival Distributions: Reliability Applications

in the Biomedical Sciences. Wiley, New York.

[72] Guess, F. and Park, D.H. (1991), Nonparametric confidence bounds, using censored

data, on the mean residual life. IEEE Transactions on Reliability, 40(1), 78-80.

[73] Guess, F. and Proschan, F. (1988), Mean residual life: theory and applications. In:

Handbook of Statistics, P.R. Krishnaiah and C.R. Rao (Eds.), Vol. 7, pp. 215-224,

Elsevier, North Holand.

[74] Gupta, N. (2013), Stochastic comparisons of residual lifetimes and inactivity times

of coherent system. Journal of Applied Probability, 50, 848-860.

[75] Gupta, P.L. (2015), Properties of reliability functions of discrete distributions. Com-

munications in Statistics- Theory & Methods, 44(19), 4114-4131.

[76] Gupta, R. C. (1975), On characterization of distributions by conditional expectations.

Communications in Statistics- Theory & Methods, 4, 99-103.

[77] Gupta, R.C. (1981), On the mean residual life function in survival studies. In: C.

Taillie, G. P. Patil and B.A. Baldassari, Eds., Statistical Distributions in Scientific

work, Vol. 5, Reid R©l, Dordrechet-Boston, 327-334.



180 Bibliography

[78] Gupta, R.C. (1987), On the monotonic properties of the residual variance and their

applications in reliability. Journal of Statistical Planning and Inference, 16, 329-335.

[79] Gupta, R.C. (2006), Variance residual life function in reliability studies. Metron,

54(3), 343-355.

[80] Gupta, R.C. (2016), Mean residual life function for additive and multiplicative hazard

rate models. Probability in the Engineering and Informational Sciences, 30(2), 281-

297.

[81] Gupta, R.C. and Akman, H.O. (1995), Mean residual life functions for certain types

of non-monotonic ageing. Communication in Statistics- Stochastic Models, 11(1), 219-

225. [Erratum: Communications in Statistics- Stochastic Models, 11(3), 561-562].

[82] Gupta, P.L. and Bradley, D.M. (2003), Limiting behaviour of the mean residual life.

Annals of the Institute of Statistical Mathematics, 55(1), 217-226.

[83] Gupta, N., Gandotra, N. and Bajaj, R. (2012), Reliability properties of residual life-

time and inactivity time of series and parallel system. Journal of Applied Mathematics,

Statistics and Informatics, 8, 5-16.

[84] Gupta, P.L. and Gupta, R.C. (1983), On the moments of residual life in reliability

and some characterization results. Communications in Statistics- Theory & Methods,

12(4), 449-461.

[85] Gupta, R.C. and Gupta, R.D. (2007), Proportional reversed hazard rate model and

its applications. Journal of Statistical Planning and Inference, 137, 3525-3536.

[86] Gupta, R.D., Gupta, R.C. and Sankaran, P.G. (2004), Some characterization results

based on factorization of the (reversed) hazard rate function. Communications in

Statistics- Theory & Methods, 33(12), 3009-3031.

[87] Gupta, R.C. and Kirmani, S.N.U.A. (1987), On order relations between reliability

measures. Communications in Statistics-Stochastic Models, 3(1), 149-156.



Bibliography 181

[88] Gupta, R.C. and Kirmani, S.N.U.A. (1998), Residual life function in reliability stud-

ies. Frontiers in Reliability, 175-190.

[89] Gupta, R.C. and Kirmani, S.N.U.A. (2000), Residual coefficient of variation and

some characterization results. Journal of Statistical Planning and Inference, 91(1),

23-31.

[90] Gupta, R.C. and Kirmani, S.N.U.A. (2004a), Some characterization results based

on facorization of the (reversed) hazard rate function. Communications in Statistics-

Theory & Methods, 33(4), 3009-3031.

[91] Gupta, R.C. and Kirmani, S.N.U.A. (2004b), Moments of residual life and some

characterization results. Journal of Applied Statistical Science, 13(2), 155-167.

[92] Gupta, R.C., Kirmani, S.N.U.A. and Launer, R.L. (1987), On life distributions having

monotone residual variance. Probability in the Engineering and Informational Sciences,

1(3), 299-307.

[93] Gupta, N., Misra, N. and Kumar, S. (2015), Stochastic comparisons of residual life-

times and inactivity times of coherent systems with dependent identically distributed

components. European Journal of Operational Research, 240(2), 425-430.

[94] Gupta, R.D. and Nanda, A.K. (2001), Some results on reversed hazard rate ordering.

Communications in Statistics- Theory & Methods, 30(11), 2447-2457.

[95] Gupta, R.C. and Wu, H. (2001), Analyzing survival data by proportional reversed

hazard model. International Journal of Reliability and Application, 2(1), 1-26.

[96] Gurler, S. (2012), On residaul lifetimes in sequential (n-k+1)-out-of-n systems. Sta-

tistical Papers, 53, 23-31.

[97] Hall, W.J. and Wellner, J.A. (1981), Mean residual life. In: M. Csorgo, D.A. Dawson,

J.N.K. Rao and A.K.Md.E. Saleh, Eds., Statistics and Related Topics. North-Holland,

Amsterdam, 169-184.



182 Bibliography

[98] Hamdan, M.A. (1972), On the characterization by conditional expectations. Annals

of Mathematical Statistics, 41, 713-717.

[99] Hazra, N., Finkelstein, M.S. and Cha, J.H. (2017), Stochastic ordering for populations

of manufactured items. Test, 27, 173-196.

[100] Hesselager, O., Wang, S. and Willmot, G. (1998), Exponential and scale mixtures

and equilibrium distributions. Scandinavian Actuarial Journal, 1998(2), 125-142.

[101] Hollander, M. and Proschan, F. (1975), Tests for mean residual life. Biometrika,

62(3), 585-593.

[102] Hollander, M. and Proschan, F. (1980), Tests for the mean residual life, amendments

and corrections. Biometrika, 67(1), 259.

[103] Hu, X., Kochar, S.C., Mukherjee, H. and Samniego, F.J. (2002), Estimation of two

ordered mean residual life functions. Journal of Statistical Planning and Inference,

107, 321-341.

[104] Hu, T., Kundu, A. and Nanda, A.K. (2001), On generalized ordering and ageing

properties with their implications. In: System and Bayesian Reliability, Hayakawa,

Y., Irony, T. and Xie, M. (Eds.), Vol. 5, World Scientific, New Jersy, 199-288.

[105] Hu, T., Ma, M. and Nanda, A.K. (2004), Characterizations of generalized ageing

classes by the excess lifetime. Southeast Asian Bulletin of Mathematics, 28, 279-285.

[106] Huang, W.J. and Su, N.C. (2012), Characterizations of distributions based on mo-

ments of residual life. Communications in Statistics- Theory & Methods, 41, 2750-

2761.

[107] Huynh, K.T., Castro, I.T., Barros, A. and Berenguer, C. (2012), On the construction

of mean residual life for maintenance decision-making. IFAC Proceedings Volumes,

45(20), 654-659.

[108] Izadkhah, S. and Kayid, M. (2013), Reliability analysis of the harmonic mean inac-

tivity time order. IEEE Transctions on Reliability, 62(2), 329-337.



Bibliography 183

[109] Jardine, A.K.S. and Kirkham, A.J.C. (1973), Maintenance policy for sugar refinery

centrifuges. Proceedings of the Institution of Mechanical Engineers, 187, 679-686.

[110] Joag-Dev, K., Kochar, S. and Proschan, F. (1995), A general composition theo-

rem and its applications to certain partial orderings of distributions. Statistics and

Probability Letters, 22, 111-119.

[111] Kalbfleisch, J.D. and Lawless, J.F. (1989), Inference based on retrospective ascer-

tainment: An analysis of data on transfusion-related AIDS. Journal of the American

Statistical Association, 84(406), 360-372.

[112] Kanjo, A.I. (1996), Asymptotic test for monotone variance residual life. Arab Jour-

nal of Mathematical Sciences, 1, 65-75.

[113] Kanwar, S. and Madhu, B.J. (1991), A test for the variance residual life. Commu-

nications in Statistics- Theory & Methods, 20(1), 327-331.

[114] Karlin, S. (1968), Total Positivity. Stanford University Press, California.

[115] Karlin, S. (1982), Some results on optimal partitioning of variance and monotonicity

with truncation level. In G. Kallianpur, P.R. Krishnaiah, J.K. Ghosh (eds.), Statistics

and Probability, Essays in Honour of C. R. Rao, North Holland Publishing Company,

North Holland, Amsterdam, pp. 375-382.

[116] Kass, R., Van Heerwaarden, A.E. and Goovaerts, M.J. (1994), Ordering of Actuarial

Risks. Caire Education Series 1, Brussels.

[117] Kayid, M. and Ahmad, I.A. (2004), On the mean inactivity time ordering with

reliability applications. Probability in the Engineering and Informational Sciences,

18(3), 395-409.

[118] Kayid, M., Al-nahawati, H. and Ahmad, I.A. (2011), Testing behaviour of the

reversed hazard rate. Applied Mathematical Modeling, 35(5), 2508-2515.



184 Bibliography

[119] Kayid, M. and Izadkhah, S. (2014), Mean inactivity time function, associated or-

derings, and classes of life distributions. IEEE Transactions on Reliability, 63(2),

593-602.

[120] Kayid, M. and Izadkhah, S. (2015a), Characterizations of the exponential distribu-

tion by the concept of residual life at random time. Statistics and Probability Letters,

107, 164-169.

[121] Kayid, M. and Izadkhah, S. (2015b), A new extended mixture model of residual

lifetime distributions. Operations Research Letters, 43(2), 183-188.

[122] Kayid, M. and Izadkhah, S. (2016), Some new results about the variance inactivity

time ordering with applications. Applied Mathematical Modelling, 40(5-6), 3832-3842.

[123] Kayid, M. and Izadkhah, S. (2018), Testing behavior of the mean inactivity time.

Journal of Testing and Evaluation, 46(6), 2649-2653.

[124] Kayid, M., Izadkhah, S. and Abouammoh, A.M. (2018), Increasing mean inactivity

time ordering: A quantile approach. Mathematical Problems in Engineering, 1-10.

[125] Kayid, M., Izadkhah, S. and Abouammoh, A.M. (2019), Proportional reversed haz-

ard rates weighted frailty model. Physica A: Statistical Mechanics and its Applications,

528, 121308.

[126] Kayid, M., Izadkhah, S. and Alshami, S. (2017), Development on the mean inactiv-

ity time order with applications. Operations Research Letters, 45(5), 525-529.

[127] Keilson, J. and Sumita, M. (1982), Uniform stochastic ordering and related inequal-

ities. Canadian Journal of Statistics, 10, 181-198.

[128] Khaledi, B.E. and Shaked, M. (2010), Stochastic comparisons of multivariate mix-

tures. Journal of Multivariate Analysis, 101, 2486-2498.

[129] Khorashadizadeh, M., Roknabadi, A.H.R. and Borzadaran, G.R.M. (2010), Vari-

ance residual life function in discrete random ageing. Metron, 68, 67-75.



Bibliography 185

[130] Khorashadizadeh, M., Roknabadi, A.H.R. and Borzadaran, G.R.M. (2013a), Vari-

ance residual life function based on double truncation. Metron, 71, 175-188.

[131] Khorashadizadeh, M., Roknabadi, A.H.R. and Borzadaran, G.R.M. (2013b), Re-

versed variance residual life function and its properties in discrete lifetime models.

International Journal of Quality and Reliability Management, 30(6), 639-646.

[132] Kijima, M. (1998), Hazard rate and reversed hazard rate monotonicities in

continuous-time Markov chains. Journal of Applied Probability, 35(3), 545-556.

[133] Kijima, M. and Ohnishi, M. (1999), Stochastic orders and their applications in

financial optimization. Mathematical Methods of Operations Research, 50, 351-372.

[134] Kulkarni, H.V. and Rattihalli, R.N. (2002), Nonparametric estimation of a bivariate

mean residual life function. Journal of the American Statistical Association, 97(459),

907-917.

[135] Kundu, C. and Ghosh, A. (2017), Inequalities involving expectations of se-

lected functions in reliability theory to characterize distributions. Communications

in Statistics- Theory & Methods, 46(17), 8468-8478.

[136] Kundu, C. and Nanda, A.K. (2010), Some reliability properties of the inactivity

time. Communications in Statistics- Theory & Methods, 39(5), 899-911.

[137] Kundu, C. and Sarkar, K. (2017), Characterizations based on higher order and

partial moments of inactivity time. Statistical Papers, 58, 607-626.

[138] Kuo, W. (1984), Reliability enhancement through optimal burn-in. IEEE Transac-

tions on reliability, 33, 145-156.

[139] Lagakos, S.W., Barraj, L.M. and DE Gruttola, V. (1988), Nonparametric analysis

of truncated survival data, with application to AIDS. Biometrika, 75(3), 515-523.

[140] Lai, C.D. and Xie, M. (2006), Stochastic Ageing and Dependence for Reliability.

Springer, New york.



186 Bibliography

[141] Launer, R.L. (1984), Inequalities for NBUE and NWUE life distributions. Opera-

tions Research, 32(3), 660-667.

[142] Lawless, J.F. (2003), Statistical Models and Methods for Lifetime Data. Wiley, New

York.

[143] Lehmann, E.L. (1955), Ordered families of distributions. Annals of Mathematical

Statistics, 26, 399-419.

[144] Le Son, K., Fouladirad, M., Barros, A., Levrat, E. and Iung, B. (2013), Remaining

useful life estimation based on stochastic deterioration models: A comparative study.

Reliability Engineering and System Safety, 112, 165-175.

[145] Li, L. (1997), Large sample nonparametric estimation of the mean residual life.

Communications in Statistics- Theory & Methods, 26(5), 1183-1201.

[146] Li, X. and Fang, R. (2018), Stochastic properties of two general versions of the

residual lifetime at random times. Applied Stochastic Models in Business and Industry,

34(4), 528-543.

[147] Li, X. and Lu, J. (2003), Stochastic comparisons on residual life and inactivity

time of series and parallel systems. Probability in the Engineering and Informational

Sciences, 17(2), 267-275.

[148] Li, X. and Xu, M. (2006), Some results about MIT order and IMIT class of life

distributions. Probability in the Engineering and Informational Sciences, 20(3), 481-

496.

[149] Li, X. and Zuo, M.J. (2004), Stochastic comparison of residual life and inactivity

time at a random time. Stochastic Models, 20(2), 229-235.

[150] Lillo, R.E. (2000), Note on relations between criteria for ageing. Reliability Engi-

neering and System Safety, 67, 129-133.

[151] Lin, G.D. (2003), Characterizations of the exponentital distribution via the residual
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