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Abstract: 
 
Partial Differential Equations (PDEs) are crucial in modeling various physical phenomena across 
disciplines such as mathematical biology, environmental engineering, fluid dynamics, and wave 
propagation in electromagnetics and acoustics. Many problems governed by parabolic and hyperbolic 
PDEs exhibit complex behaviors, including pattern formation in chemical and biological systems and 
crack propagation in solid mechanics. Due to the inherent complexity of these equations, analytical 
solutions are often infeasible, necessitating the use of numerical methods for accurate approximations. 
A significant challenge in solving these PDEs numerically is stiffness, which arises from interactions 
between processes occurring at multiple spatial and temporal scales. High-order accurate methods are 
essential to resolve such problems efficiently. However, classical explicit methods suffer from severe 
stability constraints when dealing with stiffness, while fully or partially implicit schemes provide better 
stability but introduce higher computational costs. This trade-off underscores the need for advanced 
numerical methods that balance stability, accuracy, and computational efficiency while preserving key 
physical properties. 
 
Chapter 1 presents an introduction and a brief literature review of such PDEs, highlighting the numerical 
challenges associated with solving stiff systems and the essential physical properties that numerical 
schemes must satisfy. 
 
Chapter 2 introduces a class of unconditionally strong stability preserving (SSP) multi-derivative 
methods for the numerical simulation of stiff reaction-diffusion systems. The unconditional SSP 
property ensures that these methods remain stable without restrictive time-step constraints, making 
them highly efficient for solving reaction-diffusion problems in the stiff regime. Unlike traditional 
implicit methods, the proposed approach does not require inversion of the coefficient matrix, 
significantly reducing computational complexity while maintaining accuracy across a wide range of 
parameters. The theoretical proof of the SSP property is established, ensuring the efficiency of the 
method. The accuracy of these methods is evaluated using L∞-error analysis, and comparisons with 
existing literature demonstrate superior performance, even for larger time steps. Numerical simulations 
of two-dimensional reaction-diffusion systems, including the Brusselator, Gray-Scott, and 
Schnakenberg models, pose additional challenges due to higher dimensionality, stiffness in both 
reaction and diffusion terms, and nonlinear reaction dynamics. The proposed methods effectively 
handled these complexities, offering an accurate and efficient framework for solving such nonlinear 
systems. 
 
In Chapter 3, the concept of high-order accurate methods with strong stability properties is extended 
for convection-diffusion systems. A novel class of computationally explicit multiderivative methods has 
been developed for the numerical solution of convection-dominated diffusion equations, where the 
dominance of the convection term introduced significant computational challenges and rendered these 
problems highly hyperbolic. The proposed methods have been designed to preserve strong stability, 
ensuring efficient simulation of convection-dominated diffusion equations without imposing restrictive 
time-step constraints. To enhance accuracy, a fourth-order compact finite difference scheme is 
employed for spatial discretization. The accuracy of these methods is evaluated using L2- and L∞-error 
norms, demonstrating improved performance and a wider stability region compared to existing implicit-
explicit (IMEX) methods of the same order. Furthermore, the effectiveness and robustness of the 
proposed methods are validated through numerical simulations of one- and two-dimensional 
convection-diffusion equations with varying convection and diffusion coefficients. 



In Chapter 4, we have developed an energy-preserving, partially implicit method for the simulation of 
undamped acoustic and soliton wave propagation in homogeneous and heterogeneous mediums. The 
derived method is second-order accurate in time and preserves the physical properties of the wave 
propagation problems. The numerical properties of the methods are evaluated using Fourier analysis for 
one- and two-dimensional linear wave equations. Energy-preserving properties of the fully discrete 
scheme are validated through theoretical analysis and numerical experiments. Convergence analysis is 
also performed to assess the rate of convergence of the developed scheme. Moreover, to assess the 
efficiency and accuracy of the developed method, several numerical simulations are performed for 
acoustic wave propagation in two- and three-layered mediums. Simulations of the corner-edge model, 
nonlinear sine-Gordon, and Klein-Gordon equations in homogeneous and heterogeneous mediums 
validate the accuracy and efficiency of the developed method.  
 
In Chapter 5, we have extended the concept of energy-preserving space-time discretization methods for 
damped wave equations. The developed method is implemented with a fourth-order compact finite 
difference scheme for the numerical simulation of damped linear and nonlinear wave equations. The 
damped wave equation is an extension of the classical wave equation that includes a damping term to 
model energy dissipation over time. Theoretical convergence analysis is established, and discrete energy 
errors for the developed method are computed for wave propagation in the homogeneous and 
inhomogeneous mediums by considering the relative errors. The theoretical convergence rate is also 
validated numerically using the discrete 𝐿ଶ- norm. The accuracy of the developed method is validated 
through various cases of wave and soliton propagation.  
 
In Chapter 6, we summarized our research work, drawn conclusions based on our findings, and provided 
recommendations for future research directions. 
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