

RAJIV GANDHI INSTITUTE OF PETROLEUM TECHNOLOGY

(AN INSTITUTION OF NATIONAL IMPORTANCE, GOVERNMENT OF INDIA)

Announces New Programme for Working Professionals

MASTER OF BUSINESS ADMINISTRATION (MBA) IN

ENERGY TRANSITION

Rajiv Gandhi Institute of Petroleum Technology (RGIPT) being a premier domainspecific Institution of National Importance in the country, prioritizes capacity development in domain industries as one of the important objectives. The global energy sector is projected to undergo a revolutionary transition from fossil-based sources to a renewable forms of energy such as solar, H2, and wind to provide solutions to climate change and global warming. Therefore, capacity development of existing working professionals and freshly qualified manpower's in the evolving renewable energy domains is envisaged to fuel this transition and facilitate market establishment in a new sector. Supporting the above, the Department of Management Studies proposes an MBA programme in energy transition management with multiple entries and exit options along NEP 2020. The programme is designed to run under hybrid mode. The focus of the programme will be on understanding the consumption trends of energy nationally and internationally. The course aims to provide industry professionals, bureaucrats and policymakers an insight into the future energy resources, energy economics and climate issues resulting from a carbon-based energy basket. The programme also caters to industry professionals who have a technical background and experience in the energy domain by helping them understand the social, economic and political impact of energy production and consumption.

Salient Features

- Only for Working Professionals, especially for Oil & Gas sector
- Two years MBA programme; Sem I –1st August to 20th December & Semester II- 2nd Jan- 15 May
- Multiple Entry -Exit Option, as per NEP 2020. Participants can complete the programme with a Certificate (6 months), Diploma (1 year) or Degree (2 years)
- Hybrid Course Delivery, with a two weeks per semester stay on the Campus.
- Digital access to course material.
- Exam will be conducted online.

Mode of Delivery

- The classes will be conducted via online mode using virtual platforms. Online lectures can be attended via internet using a computer from any location.
- Classes will be scheduled from One class per day (Monday-Friday).
- Class duration will be 90 minutes.
- Two weeks per semester stay on the campus.¹
- ¹ Boarding / Lodging charges during campus stay will be changed separately.

Evaluation

Evaluation is a continuous process and faculty will conduct quizzes, assignments, and presentations to assess the students learning. The distribution of weightage for each component of the theory course shall be as follows:

End Semester Examination	50
Mid Semester Examination	20
Quizzes/short tests, tutorials, assignments	10
Project Work	20
Total	100

ELIGIBILITY FOR ADMISSION

- The candidate must have studied Mathematics at 12th standard.
- Must hold a Bachelor's degree from a recognized university/institute/colleges.
- Must be working as a regular employee in any industry with a minimum of 2 years of experience.
- Government functionaries (bureaucrats and policymakers) at a minimum pay matrix level 10 of 7th CPC or equivalent.
- Must produce a no-objection certificate from the employer at the time of admission.
- There is no upper age limit.
- There is no reservation of seats for any category of applicants.

There is no age limit for candidates seeking admission to MBA in Energy Transition.

Admission Time Line

The admission announcement to MBA in Energy Transition for this academic session will be made in May 2024.

Activity	Timeline
Start of Online Submissions of	Friday 10 th May 2024
Applications	
Last Date of Submission of	Friday 28 th June 2024
Applications	
Class Commencement	Monday, 29 th July 2024

Maximum Seats Available = 50. No Reservation Policy.

Fees:

Programme Fees: Rs. 2,26,000/- in semester-I and subsequently Rs 2,21,000/- per semester

Boarding / Lodging charges during campus stay will be charged separately.

Weblink for MBA in Energy Transitions Management: https://www.rgipt.ac.in/en/page/mba-in-energy-transition

Course Outline

Course Code	Semester I	L-P	Credit
MET5202	Introduction to Energy Transition and Energy Policy	2-2	8
MET5101	Energy Economics and Markets & Geopolitics	2-2	8
MET5315	Financial-Markets-and Energy Transition	2-2	8
MET5210	Introduction to Renewable Energy and CCUS	2-2	8
MET5212	Business Fundamentals for Energy Professionals	2-2	8
		Total	40
	Semester II		
MET5204	Energy Transition Pathways for Diverse Industries	2-2	8
MET5803	Sustainable Supply Chain Management	2-2	8
MET5801	Quantitative Methods & Risk Analysis I	2-2	8
MET5205	Renewable Energy Marketing and Sustainable Branding	2-2	8
MET5211	Advanced Concepts in Renewable Energy and CCUS	2-2	8
		Total	40
	Semester III		
MET5501	Leadership & Public Engagement for Energy Transition	2-2	8
MET5314	Advanced Renewable Energy Finance	2-2	8
MET5102	Circular Economy and Sustainability	2-2	8
MET5802	Quantitative Methods & Risk Analysis II	2-2	8
MET5213	Strategic Management in Energy Companies	2-2	8
		Total	40
	Semester IV		1
MET5315	Derivatives & Energy Trading	2-2	8
MET5601	Artificial Intelligence for Energy Management	2-2	8
MET5201	Contracts and Procurement Management	2-2	8
MET5103	Government Policy & Interventions in Energy Transition	2-2	8
MET5000	Project	2-2	10
Total Course Credit			162

L = Lecture hours per week; P = No. Of hours a student is expected to work for the project Credits for a course C = L + P

